Способы устранения погрешности сельсинов
Индикаторный режим используется при отсутствии другого исполнительного двигателя. Синхронизирующий момент между валами сельсина- датчика и сельсина- приемника создается при наличии некоторого пространственного угла =
—
, называемого углом рассогласования. Появляющиеся при этом ЭДС обеспечивают протекание тока по обмоткам синхронизации датчика и приемника. В результате в сельсине- приемнике возникает момент, старающийся повернуть его вал на угол равный углу поворота датчика. Из — за наличия механической нагрузки на валу приемника угол рассогласования, как правило, больше нуля.
В трансформаторном режиме к ведомой оси приложен значительный момент сопротивления. Поэтому угол рассогласования отрабатывается в этом случае с помощью исполнительного двигателя. Появляющееся в обмотке возбуждения выходное напряжение подается через усилитель на обмотку исполнительного двигателя. Сельсины могут работать в режиме поворота и в режиме вращения. В первом случае имеем статическую ошибку системы синхронной связи, а во втором ошибка рассогласования определяет динамическую точность системы.
Трансформаторный режим однофазных сельсинов. Рассмотрим работу однофазных
сельсинов на примере контактных сельсинов с обмоткой возбуждения на статоре. Полученные выводы в одинаковой мере могут быть распространены как на контактные сельсины с обмоткой возбуждения на роторе, так и на бесконтактные сельсины.
Рис. 5.8. Схема включения сельсинов при работе в трансформаторном режиме
Переменный ток, проходящий по обмотке возбуждения сельсина- датчика (рис. 5.8), создает в нем пульсирующий магнитный поток, который индуктирует ЭДС в трех фазах обмотки синхронизации. Токи, протекающие от действия этих ЭДС в обмотках синхронизации сельсина — приемника создадут свой пульсирующий магнитный поток. Направление оси этого потока зависит от углового положения ротора приемника. Если при этом в сельсине — приемнике возникает продольная составляющая потока, то она индуцирует в его обмотке возбуждения ЭДС, являющуюся выходным напряжением, подаваемым после усиления на исполнительный двигатель, который поворачивает ведомую ось О2 ротора приемника. Когда ось магнитного потока, создаваемого ротором сельсина — приемника станет перпендикулярной оси обмотки возбуждения, выходное напряжение станет равным нулю и вращение ведомой оси прекратится.
Следовательно, для работы системы необходимо, чтобы ток в роторе сельсина — приемника создавал продольную составляющую магнитного потока. В согласованном положении роторов продольная составляющая магнитного потока сельсина — приемника отсутствует.
Обмотка возбуждения В сельсина — датчика создает магнитный поток ФВ, синусоидально распределенный вдоль окружности статора и ротора и пульсирующий с частотой сети. Величина ЭДС, индуктируемая этим потоком, в каждой фазе обмотки ротора датчика зависит от ее положения относительно оси обмотки возбуждения. Если ось первой фазы ротора — датчика совпадает с осью обмотки возбуждения (рис. 5.9а) то
В общем случае, когда ось первой фазы ротора сдвинута относительно обмотки возбуждения на угол , получим
Так как одноименные фазы соединены последовательно, то проходящий по ним ток:
— наибольшее действующее значение тока в фазе обмотки ротора;
— общее сопротивление последовательно включенных фаз датчика и приемника.
Очевидно, что , поэтому нейтральный провод не используется.
Считая, что НС отдельных фаз распределены в пространстве синусоидально, получим:
F2m=0,9I2mw2 — максимальное значение НС, создаваемой одной фазой обмотки ротора.
Для определения результирующей НС всех трех фаз датчика сложим их составляющие FДd и FДq по продольной оси d (оси обмотки возбуждения) и по поперечной оси q.
Таким образом, результирующая НС ротора датчика может быть представлена пространственным вектором , который при любом угле
направлен по продольной оси и имеет постоянную величину, равную
.
Намагничивающие силы соответствующих фаз ротора сельсина — приемника будут отличаться от НС фаз ротора датчика только знаком, т. к. ток в фазах обмотки ротора приемника направлен противоположно току в фазах обмотки ротора датчика. Поэтому результирующая НС сельсина — приемника также может быть представлена пространственным вектором , величина которого не зависит от угла поворота роторов датчика и приёмника и всегда равна
.
Продольная и поперечная составляющие этой силы:
Знак «-» в этих выражениях указывает, что вектор результирующей НС
поворачивается в противоположную сторону по отношению к НС ротора датчика.
Рис. 5.10. Векторы МДС ротора в датчике (а) и приемнике
(б) при повороте ротора датчика на угол
.
Так, например, если установить ротор приемника в положение и повернуть ротор датчика на угол
=60 0 по часовой стрелке (рис. 5.10а), то вектор НС
повернется относительно ротора приемника на угол
=
—
=60 0 , но в противоположном направлении, т.е. против часовой стрелки(рис. 5.10б).
Продольная составляющая НС ротора в датчике компенсируется НС, созданной компенсационным током, поступающим из сети в обмотку возбуждения (аналогично обычному трансформатору). В приемнике же НС ротора создает пульсирующий магнитный поток, продольная составляющая которого
индуктирует в выходной обмотке (обмотке возбуждения) ЭДС:
E1m — действующее значение ЭДС в выходной обмотке в случае, когда вектор НС совпадает с осью этой обмотки.
Обычно удобнее иметь при согласованном положении приемника и датчика нулевой сигнал. Поэтому ротор и статор сельсина приемника при согласованном положении ведущей и ведомой осей предварительно смещают на 90 0 относительно ротора или статора сельсина — датчика. В этом случае выходной сигнал изменяется по закону
При выборе сельсина, предназначенного для трансформаторного режима работы, важно знать величину удельного выходного напряжения, т.е. величину Uвых, приходящую на 1 0 угла рассогласования:
Эта величина обычно приводится в паспорте сельсина. Для того, чтобы зависимость выходного сигнала Uвых от угла рассогласования была по возможности близкой к синусоидальной, сельсины, предназначенные для работы в трансформаторном режиме, выполняют с неявно выраженными полюсами. Этим достигается существенное уменьшение высших гармоник в кривой ЭДС и повышение точности при передаче угла.
Индикаторные режимы работы однофазных сельсинов. В этом режиме на валу сельсина — приемника имеется незначительный момент сопротивления, поэтому для поворота ротора приемника вслед за поворотом ротора датчика требуется небольшой вращающий момент, который может быть получен от самого сельсина — приемника без дополнительных усилительных устройств.
Схема включения сельсинов для индикаторного режима имеет вид (рис. 5.11):
Рис. 5.11. Схема включения сельсинов при работе их в индикаторном режиме.
Пульсирующие магнитные потоки, создаваемые обмотками возбуждения датчика и приемника, индуктируют в трех фазах обмоток синхронизации ЭДС. Если между роторами датчика и приемника имеется некоторый угол рассогласования , то по обмоткам синхронизации будут протекать токи, которые, взаимодействуя с потоком возбуждения, создают в датчике и приемнике синхронизирующие моменты. Эти моменты имеют противоположные направления и стремятся свести к нулю угол рассогласования. Обычно ротор датчика заторможен, поэтому его синхронизирующий момент воспринимается механизмом, поворачивающим ведущую ось О1; синхронизирующий же момент приемника поворачивает его ротор в ту же сторону и на тот же угол, на который поворачивается ротор датчика.
В трех фазах обмотки синхронизации датчика потока возбуждения Фв индуцирует ЭДС:
Так как обмотка возбуждения приемника присоединена к той же сети однофазного тока, то в фазах его обмотки синхронизации будет индуцироваться ЭДС:
В виду того, что ЭДС в одноименных фазах датчика и приемника направлены по контуру, образованному проводами линии связи, встречно, токи в фазах датчика и приемника:
Представим ток в фазах обмоток синхронизации в виде двух составляющих:
где составляющая со «штрихом» обусловлены наличием ЭДС EД в обмотках датчика, а «два штриха» — ЭДС En в обмотках приемника. Это позволяет при определение НС в датчике и приемнике воспользоваться результатами, полученными для дифференциального режима работы сельсинов.
Составляющие токов и
создают в датчике НС
направленную по продольной оси, а в приемнике НС-
,
продольная и поперечная составляющие которой равны
,
Погрешность в сельсинах. Погрешность при работе сельсинов в индикаторном и трансформаторном режимах вызываются электрической, магнитной и механической асимметрией датчика и приемника, обусловленными технологическими причинами, влиянием высших гармоник в кривой НС ротора, влиянием сопротивления линии связи, изменением напряжения питающей сети и др. Кроме того, при работе сельсинов в трансформаторном режиме погрешность в работе сельсинов может быть вызвана тормозным моментом на валу приемника.
Устранить технологические погрешности можно, обеспечив высокую точность штамповки листов ротора и статора и сборки их пакетов, строгую концентричность цилиндрических поверхностей ротора и статора (равномерность воздушного зазора, тщательную балансировку ротора и пр.). Уменьшить высшие гармоники в кривой НС ротора можно применением синусных (точных) обмоток. При работе сельсинов в трансформаторном режиме весьма важно, чтобы при =0 было мало остаточное напряжение в выходной обмотке (нулевой сигнал). В современных сельсинах благодаря высокому качеству изготовления и использованию точных обмоток удается уменьшить нулевой сигнал до 0,2..0,3%.
В тех случаях, когда датчик удален на значительное расстояние от приемника, сопротивление линии связи становится соизмеримым с собственным сопротивлением обмоток синхронизации. Это приводит к уменьшению тока в обмотках синхронизации датчика и приемника, вследствие чего уменьшается выходное напряжение приемника при работе сельсинов в трансформаторном режиме и величина синхронизирующего момента Мс при работе в индикаторном режиме. Аналогично влияет и падение напряжения в скользящих контактах.
Для уменьшения влияния контактов на работу сельсинов и снижения трения в их подвижных частях стремятся по возможности уменьшить число скользящих контактов.
С этой целью обмотку синхронизации, в большинстве случаев, располагают на статоре, а возбуждения — на роторе. Тогда изменение переходного сопротивления контактов мало сказывается на точности работы системы передачи угла; выход их из строя не приводит к полному нарушению работы системы (в этом случае сельсин — приемник работает как синхронный реактивный двигатель). Недостатком сельсинов с обмоткой возбуждения на роторе является то, что ток через скользящие контакты проходит у них постоянно, в то время как у сельсинов с обмоткой возбуждения на статоре контакты пропускают ток только в момент отработки угла. Однако токи возбуждения сельсинов обычно малы, поэтому надежность работы сельсинов с обмоткой возбуждения на роторе будет значительно выше, чем при расположении её на статоре.
Если сельсины работают в индикаторном режиме, то при значительных расстояниях между датчиком и приемником напряжение, подводимые к их обмоткам возбуждения, могут несколько отличаться по величине и фазе. В этом случае даже при согласованном положении роторов датчика и приемника по обмоткам синхронизации будет проходить ток и возникает определенная погрешность. Для её устранения в цепь возбуждения одной из машин включают дополнительное активно-индуктивное сопротивление, с помощью которого выравнивают по величине и фазе напряжения, подводимые к обмотке возбуждения.
При работе сельсинов в трансформаторном режиме выходная обмотка приемника обычно включается на высокоомный вход усилителя. В этом случае ток в обмотке очень мал и можно сказать, что Uвых @ Eвых. Однако, если сопротивление нагрузки Zн не очень велико, то ток нагрузки создает определенную погрешность. Так как
,
Z1 — сопротивление обмотки статора;, то выходное напряжение
Таким образом, с увеличением нагрузки выходное напряжение (при одном и том же угле рассогласования) уменьшается. Кроме того, при большой нагрузке возникает реакция выходной обмотки, приводящая к таким же искажениям зависимости Uвых= ¦ (), как и в поворотных трансформаторах.
При работе сельсинов в индикаторном режиме тормозной момент на валу приемника создает довольно существенную погрешность. Так как тормозной момент, создаваемый нагрузкой, в рассматриваемом режиме обычно весьма мал; основное влияние на точность передачи угла оказывает трение в подшипниках приемника и трение щеток о контактные кольца. Погрешность, вызванная моментом трения Мтр сельсина — приемника, характеризует его зону нечувствительности D тр, в пределах которой ротор приемника может занимать любое положение при одном и том же положении датчика.
Величина этой зоны определяется отношением
;
чем больше величина и
, тем при меньшем угле рассогласования будет преодолен момент трения Мтр и тем меньше будет погрешность в передаче угла. При работе сельсинов в трансформаторном режиме момент трения, приложенный к ведомой оси, не оказывает влияния на точность передачи угла, так как этот момент воспринимается исполнительным двигателем.
Ток в фазе ротора при индивидуальном питании от датчика одного приемника
,
а при групповом питании нескольких приемников
.
Так как максимальный синхронизирующий момент пропорционален НС , то есть току, протекающему по обмотке ротора, то при питании нескольких приемников от одного датчика максимальный момент приемника уменьшается в отношении
То есть погрешность каждого приемника будет больше, чем при индивидуальном питании. Чтобы не допустить увеличение погрешности обычно при групповом питании в качестве датчика используют сельсин с уменьшенным сопротивлением, то есть применяют для этой цели сельсин большей мощности.
В режиме непрерывного вращения сельсинов помимо рассмотренных выше трансформаторных ЭДС в фазах обмотки ротора, датчика и приемника возникают ЭДС вращения, которые по мере роста скорости вращения n уменьшают синхронизирующий момент. Величину динамического синхронизирующего момента в режиме вращения можно найти, используя метод симметричных составляющих. Однако при практических расчетах часто используют формулу Эйлера
— относительная скорость вращения ротора сельсина. Согласно (5.2.36) на рис. 5.18 показана зависимость
.
Рис. 5.18. Зависимость динамического синхронизирующего момента от относительной скорости
Обычно при динамический синхронизирующий момент
приблизительно равен статическому
. Поэтому, если требуется осуществить синхронное вращение нескольких осей при больших абсолютных значениях скорости, то обмотку возбуждения целесообразно питать от источника переменного тока повышенной частоты (чтобы относительная скорость
была небольшой).
В зависимости от величины допускаемой погрешности сельсины подразделяются на три класса точности (1,2 и 3). При работе сельсинов в индикаторном режиме погрешность датчика значительно меньше, чем у приемника, так как на последнюю погрешность сильно влияет момент трения. При работе в трансформаторном режиме момент трения приемника воспринимается исполнительным двигателем, поэтому погрешность сельсинов в этом режиме меньше, чем в индикаторном.
Источник