Простейшие способы установки рабочей точки в схеме с общим эмиттером (ОЭ)
На рис. 3.3 приведена упрощенная схема включения биполярного транзистора \(n\)-\(p\)-\(n\)-типа с ОЭ, а на рис. 3.4 — семейства типичных статических характеристик этой схемы.
Рис. 3.3. Упрощенная схема включения биполярного транзистора n-p-n-типа с ОЭ
Рис. 3.4. Статические характеристики схемы с ОЭ
Внимательное рассмотрение этих характеристик позволяет сделать ряд полезных заключений о работе транзистора в анализируемой схеме. Естественно, рассматривать следует те участки характеристик, которые соответствуют активному режиму работы транзистора.
Во-первых, из входных характеристик (рис. 3.4,а) видно, что при достижении током базы \(
Итоговый вывод следующий: при включении по схеме с ОЭ на положение рабочей точки биполярного транзистора (т.е. на ток коллектора \(
На практике получили распространение два способа обеспечения заданного положения рабочей точки по постоянному току: схема с фиксированным током базы (рис. 3.5) и схема эмиттерно-базовой стабилизации (рис. 3.6).
Рис. 3.5. Схема с фиксированным током базы
Рис. 3.6. Схема эмиттерно-базовой стабилизации
В первой схеме стабильность всех показателей каскада по постоянному току базируется на поддержании устойчивого значения тока базы транзистора \(
\(
Стабильность тока базы в рассматриваемой схеме приводит к стабильности тока коллектора, поскольку
где \(\beta_<ст>\) — статический коэффициент передачи тока базы в схеме с ОЭ.
Но данная формула также демонстрирует и основной недостаток схемы с фиксированным током базы (рис. 3.5).
Дело в том, что при производстве биполярных транзисторов возникает большой разброс в возможных значениях коэффициента \(\beta_<СТ>\), т.е. для разных экземпляров приборов необходимо устанавливать разные токи базы \(
Как следует из названия, в этой схеме положение исходной рабочей точки каскада стабилизируется за счет поддержания неизменного значения напряжения на переходе эмиттер—база транзистора. Простейший способ обеспечения данного режима состоит в применении подключенного к базе транзистора делителя напряжения на двух резисторах \(R1\), \(R2\), ток через который \(
\(
Поскольку такой физический параметр транзистора, как сопротивление эмиттерной области \(r_Э\), остается достаточно стабильным при массовом производстве, то и отпадает необходимость подбирать элементы делителя напряжения под каждый конкретный прибор — достаточно лишь один раз произвести расчеты, учитывая типономинал применяемых транзисторов и требуемое значение тока коллектора (эмиттера). Таким образом, схема эмиттерно-базовой стабилизации оказывается гораздо более удобной при массовом производстве и поэтому используется гораздо чаще (у нее есть и другие достоинства, сделавшие ее столь популярной).
Источник
Простейшие способы установки рабочей точки в схеме с общим коллектором (ОК)
Упрощенная схема включения биполярного транзистора \(n\)-\(p\)-\(n\)-типа с общим коллектором (ОК) приведена на рис. 3.7. На рис. 3.8 представлены входные статические характеристики этой схемы. Ее выходные характеристики с учетом \(I_Э \approx I_К\) практически полностью совпадают с выходными характеристиками схемы с ОЭ (рис. 3.4,б).
Рис. 3.7. Упрощенная схема включения биполярного транзистора n-p-n-типа с ОК
Рис. 3.8. Семейство входных статических характеристик схемы с ОК
Из статических характеристик видно, что напряжение на коллекторном переходе \(
На рис. 3.9 изображена схема задания смещения в транзисторном каскаде с ОК. Данная схема очень похожа на схему эмиттерно-базовой стабилизации, рассмотренную ранее для каскада с ОЭ, однако здесь мы стабилизируем напряжение на участке коллектор—база транзистора. Оказывается, что это также позволяет однозначно определить рабочую точку каскада (при заданном стабильном напряжении коллектор—база мы имеем стабильное значение тока базы и линейно от него зависящих токов эмиттера и коллектора транзистора).
Рис. 3.9. Схема задания смещения в каскаде с ОК
В схеме с ОК в цепи протекания тока базы \(
Итак, делитель на резисторах \(R1\), \(R2\) позволяет стабилизировать напряжение \(
\(
Таким образом, в схеме имеет место отрицательная обратная связь по току нагрузки.
Заметим, что значение сопротивления \(R_Э\) в этой схеме не может быть ни слишком большим, ни слишком малым, поскольку, с одной стороны, оно определяет режим работы каскада по токам \(
В дальнейшем будет показано, что введение дополнительного сопротивления в эмиттерную цепь протекания тока транзистора может оказаться полезным и в каскаде с ОЭ. Там это сопротивление будет выполнять только роль элемента обеспечения ООС по току, поскольку нагрузка включается в коллекторную цепь.
Может показаться, что смещение каскада с ОК можно организовать и способом, аналогичным тому, который был использован в схеме с фиксированным током базы на рис. 3.5. Например, это могло бы выглядеть так, как показано на рис. 3.10, но это ошибочное решение. Дело в том, что здесь в цепи протекания тока \(
Рис. 3.10. Неправильный вариант схемы смещения в каскаде с ОК
Источник
Простейшие способы установки рабочей точки в схеме с общей базой (ОБ)
Упрощенная схема каскада с ОБ и ее статические характеристики приведены на рис. 3.11, 3.12.
Рис. 3.11. Упрощенная схема включения биполярного транзистора n-p-n-типа с ОБ
Рис. 3.12. Статические характеристики схемы с ОБ
Для задания смещения в схеме с ОБ используются все те же принципы, которые были описаны выше для каскадов с ОЭ и ОК: либо стабилизируется ток базы \(
Топология каскада с ОБ такова, что оба варианта в нем реализуемы только при разделении цепей по постоянному и переменному токам (исключения возможны, если мы будем использовать источник питания со средней точкой или несколько источников питания), что неосуществимо для низкочастотных усилительных каскадов. Именно поэтому такие усилители применяются, как правило, только на достаточно высоких частотах (реже как динамические нагрузки других каскадов).
Пример схемы высокочастотного усилителя на транзисторе во включении с ОБ с эмиттерно-базовой стабилизацией рабочей точки по постоянному току приведен на рис. 3.13. А на рис. 3.14 показано, как можно обеспечить смещение при наличии источника питания со средней точкой или двух независимых источников питания.
Рис. 3.13. Высокочастотный усилитель по схеме с ОБ и эмиттерно-базовой стабилизацией (а) и его упрощенная схема для сигнала в рабочей полосе частот (б) 1
Рис. 3.14. Каскад на биполярном транзисторе по схеме с ОБ с питанием от источника со средней точкой или от двух независимых источников питания 1
1 Здесь и далее везде номиналы элементов, приводимые на схемах в скобках, даются в качестве примера. Следует, однако, понимать, что многие из рассматриваемых схем по ряду своих параметров не являются оптимальными для использования на практике, а носят скорее познавательно-учебный характер.
Источник
Простейшие способы установки рабочей точки в схеме с общим истоком (ОИ)
Схемы включения с общим истоком (ОИ) полевого транзистора с управляющим переходом и МДП-транзистора с индуцированным каналом показаны на рис. 2-2.2. Статические характеристики такого включения для полевого транзистора с управляющим \(p\)-\(n\)-переходом даны на рис. 2-2.3, а на рис. 2-2.4, 2-2.5 представлены статические характеристики для МДП-транзисторов с индуцированным или встроенным каналом.
Рис. 2-2.2. Упрощенные схемы включения \(n\)-канальных полевых транзисторов с общим истоком
Рис. 2-2.3. Статические характеристики \(n\)-канального полевого транзистора с управляющим \(p\)-\(n\)-переходом в схеме с общим истоком:
(а) характеристики передачи, (б) выходные характеристики, (в) входная характеристика, (г) характеристики обратной связи
Рис. 2-2.4. Статические характеристики \(n\)-канального МДП-транзистора с индуцированным каналом в схеме с общим истоком:
(а) характеристики передачи, (б) выходные характеристики
Рис. 2-2.5. Статические характеристики \(n\)-канального МДП-транзистора со встроенным каналом в схеме с общим истоком:
(а) характеристики передачи, (б) выходные характеристики
При рассмотрении статических характеристик биполярных транзисторов мы пользовались системой т.н. гибридных или \(H\)-характеристик, эквивалентной системе \(H\)-параметров линейных четырехполюсников. Для полевых транзисторов более удобным оказалось применение системы \(Y\)-характеристик, в которой в качестве независимых переменных выступают входное и выходное напряжения, а в качестве определяемых функций — входной и выходной токи. На рис. 2-2.3 представлены все семейства статических характеристик полевого транзистора с управляющим \(p\)-\(n\)-переходом, однако на практике для анализа схем на полевых транзисторах обычно достаточно характеристик передачи и выходных характеристик, поэтому в дальнейшем мы не будем включать в рисунки входные характеристики и характеристики обратной связи (при желании читатель может сам отстроить их графики по двум представленным семействам).
Внимательное рассмотрение представленных на рис. 2-2.3, 2-2.4, 2-2.5 характеристик показывает следующее. В области насыщения ток стока \(
Рис. 2-2.6. Комбинированная схема задания исходной рабочей точки каскада на полевом транзисторе с управляющим \(p\)-\(n\)-переходом и каналом \(n\)-типа
Основным соотношением, на базе которого осуществляется анализ на постоянном токе для этой схемы является:
Сам анализ удобно провести графически на передаточной характеристике каскада (рис. 2-2.7).
Рис. 2-2.7. Графический анализ схемы с рис. 2-2.6
Приводимые на рис. 2-2.7 построения предполагают, что в истоковой цепи включен линейный резистор \(R_И\) с вольт-амперной характеристикой, изображаемой прямой 2, а на затвор транзистора с помощью делителя напряжения \(R1\), \(R2\) подан потенциал \(
\(
Параметры делителя напряжения выбираются так, чтобы \(
При применении МДП-транзисторов схема цепей смещения остается неизменной (рис. 2-2.8). Изменяются лишь параметры элементов с учетом того, что полярность напряжения \(
Рис. 2-2.8. Комбинированная схема задания исходной рабочей точки каскада на МДП-транзисторе с каналом \(p\)-типа
Существует еще одно более простое схемное решение, позволяющее задавать рабочую точку каскадов на полевых транзисторах. Это так называемая схема истокового автосмещения (рис. 2-2.9).
Рис. 2-2.9. Схема истокового автосмещения для полевого транзистора с управляющим \(p\)-\(n\)-переходом и каналом \(n\)-типа
В данной схеме делитель напряжения заменен одним резистором в цепи протекания тока затвора \(
Схема с истоковым автосмещением оказывается крайне чувствительной к любым внешним воздействиям, прикладываемым к затвору транзистора. Это обусловило ее широкое применение в первую очередь в каскадах предварительного усиления, где требуется повышенная чувствительность и низкое энергопотребление.
Использование схемы с высокоомным резистором в цепи протекания тока затвора возможно и с МДП-транзисторами (напомним, что для этих приборов постоянный ток затвора обусловлен фактически только паразитными утечками). Но здесь необходимо иметь в виду, что установка рабочей точки каскада вблизи значения \(
В качестве примера использования обоих описанных выше схем смещения на рис. 2-2.10 представлен усилительный каскад на двухзатворном МДП-транзисторе.
Рис. 2-2.10. Высокочастотный усилительный каскад на двухзатворном МДП-транзисторе со встроенным каналом \(n\)-типа
Источник