Основные мероприятия по снижению потерь в электрических сетях
Потери мощности в сетях определяют с целью их снижения. Процесс снижения потерь — это оптимизация режима электрической сети. Их оптимизируют при эксплуатации и при проектировании сети. В условиях эксплуатации мероприятия по снижению потерь называются организационными (они не связаны с дополнительными капитальными вложениями), а при проектировании — в основном технические мероприятия, которые требуют дополнительных капитальных вложений.
Организационные мероприятия по снижению потерь в электрических сетях
1. Налаживание учета выработки и потребления электроэнергии.
где: Wh — счетчик .
Таким образом, необходимо организовать учет потока энергии и его контроль.
2. Повышение уровня рабочего напряжения.
Дело в том, что сети имеют запас изоляции:
c ети до 220 кВ — на 15%,
c ети 330 кВ — на 10%,
c ети 500 кВ и выше — 5%.
Особенно это важно в сетях 0,4; 10; 35; 110; 220кВ, так как эти сети очень разветвленные.
Таким образом требуется правильное регулирование напряжение в сетях для учета потерь энергии. Надо стремиться поддержать максимально возможное при увеличении напряжения на 1% в сетях до 110 кВ потери мощности и на 2%. В сетях 220 кВ всегда надо поддерживать максимально возможное напряжение. В сетях 330 кВ и выше надо регулировать напряжение с учетом потерь на корону.
Δ P = Δ P к + Δ P н
3. Оптимизация режимов трансформаторов на подстанциях. Обычно на подстанции 2 и более трансформатора.
Это мероприятие сводится к получению мощности при которой предпочтительно отключить один трансформатор . Благодаря этому экономят на потерях холостого хода, но немного увеличивают нагрузочные потери. Так как передающая мощность меньше номинальной, то увеличение потерь незначительно.
4. Разработка обоснованных норм потребления на выработку единицы продукции.
5. Быстрый и надежный ремонт сети.
6. Определение оптимальных мест размыкания электрической сети,
Электрические сети 6 — 10 кВ (городские) и сети 35 — 110 кВ часто выполняются замкнутыми, но работают в нормально разомкнутом режиме. Они на своих участках имеют разное сечение проводов и являются неоднородными.
В замкнутой неоднородной сети протекают уравнительные мощности и естественное потокораспределение отклоняется от экономического, соответствующего минимуму потерь. В этих условиях, по критерию минимума потерь, часто отыскивают места размыкания сети.
Технические мероприятия по снижению потерь по снижению потерь в электрических сетях
1. Компенсация реактивной мощности для снижения потерь энергии. При этом улучшается режим напряжений.
2. Повышение номинального напряжения за счет глубоких вводов.
Δ P = (S 2 /U 2 ) х R
3. Настройка сети.
4. Замена проводов на головных участках сети. По мере повышения нагрузок на головных участках сети протекают токи, превышающие экономические токи для данных сечений.
5. Замена недогруженных трансформаторов.
6. Установка вольтдобавочных трансформаторов в замкнутых контурах электрической сети.
7. Замена трансформаторов без РПН на трансформаторы с РПН.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Способы уменьшения потерь энергии в ЭП
При проектировании и эксплуатации разного рода электроприводов необходимо учитывать потребление и потери электроэнергии, влияние ЭП на сеть и другие электроприемники. Оценка этих свойств осуществляется с помощью так называемых энергетических показателей: коэффициента полезного действия, коэффициента мощности, потерь мощности и энергии.
Потери мощности и энергии в ЭП складываются из потерь в электродвигателе, механической передаче, преобразователе, системы управления, однако основными являются потери в электродвигателе, которым и уделяется основное внимание.
С целью уменьшения потерь энергии в период пуска или торможения двигатели к рабочим машинам подбирают таким образом, чтобы приведенный момент инерции привода при одной и той же скорости был наименьшим. Это реализуется за счет применения малогабаритных двигателей, имеющих пониженный J (двигатели с повышенным отношением длинны якоря к его диаметру, с полым или дисковым якорем). Целесообразно использование двух двигателей половинной мощности. Расчеты показывают; что ∑J двух двигателей половинной мощности оказывается меньше момента инерции одного двигателя на полную мощность. Например, два двигателя типа 4АН200 мощностью по 45 кВт имеющий суммарный момент инерции 2*1,38=2,76 кг*м 2 . Двигатель 4АН250 мощностью 90 кВт на ту же скорость имеет j=3,53 кг*м 2 , т.е. почти на 30% больше.
Другой способ уменьшения потерь ЭП – регулирование скорости идеального холостого хода, что хорошо реализуется в ступенчатом пуске ЭП (для АД – регулирование частоты вращения с помощью частоты питающего тока или числа пар полюсов; для ДПТ – регулирование частоты вращения с помощью напряжения).
При ступенчатом пуске отмечается снижение потерь электрической энергии в 2 раза.
За счет изменения в переходном процессе w0 снижаются потери энергии в роторе АД. Уменьшение потерь энергии в роторе вызовет и снижение потерь в статоре и полных потерь в АД. Приведенный момент инерции ЭП зависит не только от момента инерции двигателя или рабочей машины, но и от передачи отношения между ними. Для уменьшение потерь энергии при пуске, передаточное отношение – i следует выбирать исходя из получения минимального приведенного момента инерции ЭП и проверять экономическим расчетом.
КПД ЭП
В общем случае, когда ЭП работает с различными скоростями и нагрузками на валу
, (13)
где Апол, Апотр – полезная и потребляемая энергия,
∆А – потери энергии в ЭП,
Рполi – полезная механическая мощность ЭП на i-ом участке цикла,
∆Р – потери мощности в ЭП на i-ом участке цикла,
n – число участков работы ЭП.
Такой КПД называют цикловым или средневзвешенным.
Если ЭП работает в неизменном режиме с постоянной мощностью
. (14)
КПД ЭП, как электромеханическая система определяется произведением преобразователя, управляющего устройства, электродвигателя и механической передачи ηэп=ηп*ηуу*ηэд*ηмп.
Наиболее значимой величиной является КПД двигателя, который растет с увеличением мощности и частоты вращения (рисунок 2).
| |
|
КПД зависит также от развиваемой им полезной механической мощности на валу (рисунок 3).
Способы повышения КПД:
— ограничение времени работы на холостом ходу;
— обеспечение нагрузки близкой к номинальной (в том числе путем замены малонагруженного двигателя на двигатель меньшей мощности (должно быть экономически обоснованно));
— выбор высокочастотных электродвигателей.
| |
|
Cos ЭП.ЭП, подключаемый к сети переменного тока, потребляют активную Р и реактивную Q мощность. Активная мощность расходуется на осуществление электроприводом полезной работы и покрытие потерь в нем, а реактивная мощность обеспечивает создание электромагнитного поля двигателя и непосредственно полезной работы не производит.
Работа ЭП, как и любого другого потребителя характеризуется коэффициентом мощности
сos =
, (15)
где S – полная мощность.
Если Q не потребляется, то сos =1 (т.к. сдвиг фаз
=0). Потребляя Q ЭП дополнительно загружает систему электроснабжения, вызывая дополнительные потери напряжения и энергии, поэтому cos
должен стремится к единице. Достаточно часто, коэффициент мощности повышают компенсацией реактивной мощности статическими конденсаторами (в данном случае реактивная мощность для создания электромагнитного поля осуществляется от конденсаторов, расположенных непосредственно у АД).
Значение коэффициента мощности в значительной степени зависит от мощности, частоты вращения и загрузки электродвигателя (рисунок 4,5).
Таким образом, основными мероприятиями по повышению cos являются
1) выбор двигателя в строгом соответствии с потребляемой мощностью рабочей машины;
2) выбор высокоскоростных двигателей;
3) при эксплуатации, уменьшение времени холостого хода;
1) использование статических конденсаторов и синхронных компенсаторов.
| |
|
|
Лекция 4
Источник
Способы уменьшения потерь мощности и электроэнергии
Потери мощности и энергии в электрических сетях могут быть сокращены, прежде всего, путем рационализации работы приемников электроэнергии. Кроме того, применяется еще ряд мероприятий, цель которых заключается в повышении коэффициента мощности установки.
Почти все элементы электрической установки, помимо активной мощности, потребляют реактивную. В результате реактивная нагрузка в установке может составить 130% активной. Главные потребители реактивной мощности — это асинхронные двигатели и трансформаторы.
Наличие реактивной мощности и сети приводит к дополнительным потерям активной мощности.
Эти потери прямо пропорциональны квадрату реактивной мощности. Одновременно увеличивается потеря напряжения в сети.
Вследствие этого также уменьшается пропускная способность трансформаторов и проводов линий. Это вызывает необходимость их преждевременной замены.
Все эти обстоятельства привели к тому, что для потребителей электроэнергии в промышленности нормирован средневзвешенный коэффициент мощности, который определяется за любой промежуток времени (сутки, месяц, год).
Нейтральный коэффициент мощности принят равным 0,90—0,92. При более высоком коэффициенте мощности устанавливают скидки в тарифе на электроэнергию в пределах 2—6%, при более низком — надбавки в пределах 1,5—115%.
Шкала скидок и надбавок способствует повышению коэффициента мощности у потребителей, но она имеет существенный недостаток, так как построена исходя из средневзвешенного коэффициента мощности, а систему интересует эта величина в первую очередь в часы максимальных нагрузок. Поэтому на крупных предприятиях с присоединенной мощностью трансформаторов 5000 кВА и более расчетное значение коэффициента мощности определяют в часы дневного и вечернего максимумов нагрузки.
В сельских электроустановках скидки и надбавки на коэффициент мощности нагрузки пока не применяются, но целесообразность их введения в первую очередь на комплексах по производству сельскохозяйственной продукции на промышленной основе не вызывает сомнений.
Независимо от этого необходимо принимать все возможные меры для повышения коэффициента мощности во всех звеньях сельской электрической установки.
Одним из таких мероприятий является правильный выбор электродвигателей по мощности. Коэффициент мощности недогруженного асинхронного электродвигателя значительно ниже номинального. Поэтому при проектировании установки нельзя брать повышенные запасы мощности, а также применять двигатели закрытого типа там, где возможно использовать открытые.
Для работающих электродвигателей, не встроенных в рабочую машину, замена на меньшие безусловно целесообразна, если средняя загрузка их составляет менее 45% от номинальной мощности, и нецелесообразна при загрузке свыше 70%. В пределах средней загрузки (45—70%) следует провести технико-экономический расчет и установив возможное снижение потерь активной энергии, выяснить, покроет ли их стоимость затраты на замену двигателей.
Замена двигателей, встроенных в рабочую машину, в большинстве случаев настолько сложна, что оказывается нецелесообразной. У незагруженных асинхронных двигателей при нагрузке не выше 40 % целесообразно переключать обмотку статора с треугольника на звезду. Это можно делать только у двигателей, которые имеют выводы всех начал и концов фаз обмоток статора (шесть выводов) и у которых обмотка статора соединена в треугольник.
У многих потребителей продолжительность работы на холостом ходу достигает 50—60% от всего времени эксплуатации. Электродвигатели таких потребителей целесообразно снабжать ограничителями холостого хода. Ограничитель включают в цепь катушки управления магнитным пускателем, он отключает двигатель при отсутствии нагрузки. При этом потребление энергии двигателем значительно снижается.
При наличии однофазных нагрузок существенное значение имеет равномерное распределение их по фазам, особенно при максимуме нагрузки. Нарушение симметрии приводит к дополнительным потерям энергии и потере напряжения.
Большие дополнительные потери энергии вызывает работа незагруженных трансформаторов. Поэтому при постоянной недогрузке следует заменять их трансформаторами меньшей мощности. Если на подстанции установлены два или более трансформаторов, нужно своевременно отключать часть из них при снижении нагрузки. На необслуживаемых подстанциях отключение трансформатора и его обратное включение при увеличении нагрузки должны происходить автоматически или вручную, но минимальное число раз (на ночь, на выходной день, на летний период).
Наиболее радикальное средство повышения коэффициента мощности — это включение параллельно в сеть конденсаторов. Конденсаторы имеют бумажно-масляную изоляцию и на напряжение 380 В выполняются трехфазными, соединенными в треугольник, а на напряжение 6,3 и 10,5 кВ — однофазными. Мощность одного элемента конденсатора составляет 4 — 10 квар. Поэтому их обычно объединяют в батареи необходимой суммарной мощности. На зажимах конденсаторов включают большие активные сопротивления, через которые запасенная в конденсаторах энергия после отключения автоматически разряжается.
Преимущества конденсаторов заключаются в простоте монтажа и эксплуатации вследствие отсутствия подвижных частей и в малых потерях активной мощности 0,0025 — 0,005 кВт/квар. Стоимость 1 квар конденсатора зависит от напряжения и для низковольтных конденсаторов в 2,5 — 3 раза выше, чем для высоковольтных. От мощности батареи она практически не зависит.
Конденсаторные установки могут быть индивидуальные, групповые и централизованные.
Индивидуальные установки подключаются к зажимам приемника электроэнергии, например электродвигателя, и отключаются при его отключении. В этом случае конденсаторы используются плохо.
Групповая установка конденсаторов применяется в сети низкого напряжения. При этом использование конденсаторов несколько улучшается.
Наилучшее использование конденсаторов получается при централизованной установке их на стороне напряжения 6 — 10 кВ трансформаторной подстанции. При мощности 100 — 400 квар конденсаторы присоединяют через общий выключатель с силовым трансформатором.
Батареи конденсаторов большой мощности разделяют разъединителями на 2 — 3 секции, что позволяет грубо регулировать их мощность.
Технико-экономические расчеты показывают, что в сельских сетях в первую очередь целесообразно полностью компенсировать реактивную мощность потребительских трансформаторов, которая составляет 200—250 квар на 1000 кВА
мощности трансформаторов. Реактивную мощность электроприемников следует компенсировать, доводя коэффициент мощности при максимуме нагрузки до 0,90—0,92, но не более 0,95.
В последнее время созданы автоматические устройства с использованием тиристоров, которые обеспечивают практически мгновенное и плавное регулирование мощности, выдаваемой конденсаторной батареей в сеть. При помощи этих устройств можно поддерживать заданный коэффициент мощности при любых нагрузках.
Источник