- Способы транспортировки гормонов кровью
- 2.Образование и секреция гормонов, их транспорт кровью, механизмы действия на клетки и ткани, в зависимости от химического строения гормонов.
- 3.Саморегуляция эндокринной системы, прямые и обратные связи.
- Способы транспортировки гормонов кровью
- Гормоны в организме человека. За что они отвечают
- Как работает эндокринная система
- Функции основных гормонов в организме
- Список по названиям
- В каких случаях нужно сдавать анализы на гормоны
Способы транспортировки гормонов кровью
а) Транспорт гормонов кровью. Водорастворимые гормоны (пептиды и катехоламины) растворимы в плазме и транспортируются от мест их синтеза к тканям-мишеням, где гормоны диффундируют из капилляров в интерстициальную жидкость и направляются к клеткам-мишеням.
Стероидные и тиреоидные гормоны, напротив, циркулируют в крови, будучи связанными с белками плазмы (например, более 99% тироксина). Обычно не более 10% стероидных и тиреоидных гормонов присутствуют в плазме в свободном виде. Конъюгированные с белками гормоны не могут диффундировать через стенки капилляров и не образуют, таким образом, активной формы до тех пор, пока не состоится их разобщение, что предупреждает гиперстимуляцию клеток-мишеней.
Относительно большое количество гормонов в связанной форме являются резервом, из которого восстанавливается концентрация свободных гормонов, когда они связываются с рецепторами или покидают кровеносное русло.
б) Очищение крови от гормонов. Увеличивать или уменьшать концентрацию гормона в крови могут два фактора:
(1) скорость секреции гормона;
(2) скорость извлечения гормона из крови, которую называют скоростью метаболического очищения.
Химическая структура различных стероидных гормонов
Она обычно равна количеству миллилитров плазмы крови, освобождающейся от гормона за минуту. Для определения этого показателя необходимо знать:
(1) скорость извлечения гормона из плазмы за минуту;
(2) концентрацию гормона в миллилитре плазмы крови.
Скорость метаболического очищения определяют по следующей формуле:
Скорость метаболического очищения = Скорость извлечения гормона из плазмы / Концентрация гормона в миллилитре плазмы.
Обычно процедура определения скорости метаболического очищения следующая. Гормон снабжают радиоактивной меткой, затем вводят с постоянной скоростью в кровоток до тех пор, пока его концентрация не установится на постоянном уровне. С момента установления постоянного уровня концентрации наступает равновесие между скоростью введения гормона в кровь со скоростью его извлечения из плазмы. В это время концентрацию гормона определяют с помощью стандартных методов измерения концентрации радиоактивных веществ. Затем, используя приведенную формулу, можно рассчитать скорость метаболического очищения плазмы от гормона.
Плазма очищается от гормона различными путями, включая:
(1) метаболическое разрушение гормона в тканях;
(2) связывание гормона в тканях;
(3) экскрецию гормона печенью с желчью;
(4) экскрецию почками с мочой. Снижение скорости метаболического очищения от данного гормона может стать причиной чрезмерного повышения его концентрации в жидких средах организма.
Например, болезни печени могут стать причиной подобных состояний применительно к стероидным гормонам, т.к. они экскретируются с желчью именно печенью.
Иногда гормоны разрушаются клетками-мишенями. Они поглощаются клетками путем эндоцитоза в виде гормон-рецепторного комплекса, затем гормон метаболизируется клеткой, а рецепторы обычно встраиваются обратно в ее мембрану.
Большинство гормонов-пептидов и катехоламинов водорастворимы и свободно циркулируют в крови. Обычно они разрушаются ферментами крови и тканей и быстро экскретируются почками и печенью, поэтому присутствуют в крови в течение короткого промежутка времени. Например, период полувыведения ангиотензина II, циркулирующего в крови, составляет менее 1 мин.
Гормоны, связанные с белками плазмы, покидают кровоток существенно медленнее и могут сохраняться в нем на протяжении нескольких часов и даже дней. Так, период полувыведения кортикостероидов составляет от 20 до 100 мин, в то время как связанные с белками крови гормоны щитовидной железы имеют период полувыведения от 1 до 6 сут.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Источник
2.Образование и секреция гормонов, их транспорт кровью, механизмы действия на клетки и ткани, в зависимости от химического строения гормонов.
Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках.
В зависимости от природы синтезируемого гормона существуют два типа генетического контроля гормонального биогенеза:
1) прямой, схема биосинтеза: «гены – мРНК – про-гормоны – гормоны»;
2) опосредованный, схема: «гены – (мРНК) – ферменты – гормон».
Секреция гормонов – процесс освобождения гормонов из эндокринных клеток в межклеточные щели с дальнейшим их поступлением в кровь, лимфу. Секреция гормона строго специфична для каждой эндокринной железы. Секреторный процесс осуществляется как в покое, так и в условиях стимуляции.
Секреция и биосинтез гормонов тесно взаимосвязаны друг с другом. Эта связь зависит от химической природы гормона и особенностей механизма секреции.
Транспорт. Гормоны, поступая в кровь, транспортируются к органам и тканям. Связанный с белками плазмы и форменными элементами гормон аккумулируется в кровяном русле, временно выключается из круга биологического действия и метаболических превращений. Неактивный гормон легко активируется и получает доступ к клеткам и тканям. Параллельно идут два процесса: реализация гормонального эффекта и метаболическая инактивация. В процессе обмена гормоны изменяются функционально и структурно. Подавляющая часть гормонов метаболизируется, и лишь незначительная их часть (0,5—10 %) выводятся в неизмененном виде. Метаболическая инактивация наиболее интенсивно протекает в печени, тонком кишечнике и почках. Продукты гормонального метаболизма активно выводятся с мочой и желчью, желчные компоненты окончательно выводятся каловыми массами через кишечник.
Выделяют три механизма секреции:
1) освобождение из клеточных секреторных гранул (секреция катехоламинов и белково-пептидных гормонов);
2) освобождение из белоксвязанной формы (секреция тропных гормонов);
3) относительно свободная диффузия через клеточные мембраны (секреция стероидов).
Степень связи синтеза и секреции гормонов возрастает от первого типа к третьему.
3.Саморегуляция эндокринной системы, прямые и обратные связи.
Все процессы, происходящие в организме, имеют специфические механизмы регуляции. Один из уровней регуляции – внутриклеточный, действующий на уровне клетки. Как и многие многоступенчатые биохимические реакции, процессы деятельности эндокринных желез в той или иной степени саморегулируются по принципу обратной связи. Согласно этому принципу предыдущая стадия цепи реакций либо тормозит, либо усиливает последующие.
Регуляторные механизмы могут быть стимулирующими (облегчающими) и тормозящими.
Ведущее место в регуляции эндокринных желез принадлежит центральной нервной системе. Существует несколько механизмов регуляции:
1) нервный. Прямые нервные влияния играют определяющую роль в работе иннервируемых органов (мозгового слоя надпочечников, нейроэндокринных зон гипоталамуса и эпифиза);
В этих клетках происходит преобразование нервных импульсов в нейроэндокринный процесс.
2) нейроэндокринный, связанный с деятельностью гипофиза и гипоталамуса.
Система обратных связей:
1.Ультракороткая – в пределах гипоталамуса высвобождение 1 рилизинг-фактора влияет на выработку и секрецию
2.Короткая – гипофиз тропного гормона аденогипофиза влияет на продукцию либеринов и статинов
3. Длинная – когда имеет место влияние гормона периферической железы на продукцию тропного гормона гипофиза через гипоталамуса.
Источник
Способы транспортировки гормонов кровью
Стероидные гормоны не относятся к водорастворимым веществам, поэтому для их доставки к тканям-мишеням необходимы транспортные белки. Существует два типа транспортных белков: неспецифические белки-переносчики, такие как альбумин или транстиретин, и специфические белки-переносчики, такие как тироксинсвязывающий глобулин, половые гормоны связывающий глобулин (ПГСГ) и транскортин. Оба типа синтезируются в печени.
В свободной циркуляции в крови находится лишь менее 2% яичниковых стероидных гормонов, остальные преимущественно связаны с ПГСГ и альбумином.
Половые гормоны связывающий глобулин (ПГСГ) — b-глобулин с молекулярной массой 95 кДа — синтезируется в печени. Соответствующий ген находится на коротком плече хромосомы 17 (локус 17р12—13). По структуре он представляет собой гомодимер, состоящий из двух полипептидных цепей, и имеет единый центр связывания для андрогенов и эстрогенов. Димеризация является необходимым этапом процесса связывания.
Предполагается, что связанная и свободная фракции сосуществуют в состоянии устойчивого равновесия. Доля свободной фракции зависит от концентрации стероидного гормона, а также концентрации и связывающей способности транспортного белка.
Из всех стероидных гормонов максимальным сродством к ПГСГ обладает ДГТ. Приблизительно 98% циркулирующего тестостерона связано с ПГСГ (65%) и альбумином (33%). Эстрадиол в основном связан с альбумином (60%), в меньшей степени с ПГСГ (38%), и около 2% представлено свободной фракцией. Прогестерон тоже преимущественно связан с альбумином (80%), в меньшей степени — с транскортином (18%). Лишь 0,6% прогестерона связано с ПГСГ и около 2% циркулирует в свободном состоянии.
Метаболический клиренс этих стероидов обратно пропорционален их аффинности к ПГСГ. Таким образом, те состояния, которые влияют на уровень ПГСГ (например, беременность, прием оральных контрацептивов), напрямую влияют на уровень свободных гормонов. В связи с тем что эстрогены стимулируют, а андрогены угнетают синтез ПГСГ, его концентрация у женщин вдвое больше, чем у мужчин. На уровень ПГСГ влияют также некоторые другие гормоны и факторы.
Гормоны щитовидной железы интенсифицируют его синтез и выделение печенью. Инсулин, ИФР-I и пролактин угнетают продукцию ПГСГ в культуре клеток. Более того, концентрация ПГСГ в сыворотке крови повышается при многих заболеваниях, в том числе гипертиреозе и циррозе печени. Некоторые лекарства, например, эстроген, тамоксифен, фенитоин, также способны повышать концентрацию ПГСГ в сыворотке крови. Уровень белков-переносчиков снижается при гипертиреозе, ожирении, акромегалии, а также при приеме экзогенных андрогенов, глюкокортикоидов и гормонов роста.
Долгое время биологическую активность приписывали только свободной фракции тестостерона. Однако исследователи обратили внимание на то, что стероидные гормоны гораздо лучше связываются со своими специфическими белками-переносчиками и имеют гораздо худшую аффинность к альбумину. Кроме того, исследования процессов доставки гормона в ткани in vivo показали, что на капиллярном уровне быстро происходит диссоциация связанного с альбумином тестостерона, вследствие чего его активная фракция в действительности может быть больше, чем свободная фракция, измеренная в равновесном состоянии in vitro. Таким образом, неконъюгированные стероиды, связанные с альбумином, тоже могут считаться свободными и биологически доступными.
Как было сказано выше, на уровень ПГСГ могут влиять различные патологические состояния. Изменения концентрации ПГСГ приводят к значимым сдвигам в соотношении свободных и связанных с ПГСГ фракций гормонов. В связи с этим измерение уровня ПГСГ имеет большое клиническое значение, так как позволяет более точно оценить содержание свободных гормонов. Измерение концентрации ПГСГ проводят методом насыщения (сатурационный анализ), при котором определяют специфическую связывающую способность тестостерона, меченного атомами 3Н.
При использовании соответствующих модификаций этот метод позволяет оценить биодоступную фракцию, не связанную с ПГСГ. Недавно были разработаны методики специфического неизотропного двустадийного иммуноанализа на ПГСГ, которые используют во многих клинических лабораториях.
Источник
Гормоны в организме человека. За что они отвечают
Гормоны – биологически активные вещества, вырабатывающиеся клетками эндокринных желез (желез внутренней секреции). Оттуда они поступают в кровь и с кровотоком попадают в клетки и ткани-мишени.
Там они связываются со специфическими рецепторами и таким образом регулируют обмен веществ и множество физиологических функций. Так, они отвечают:
- за обмен веществ;
- аппетит;
- настроение;
- циклы сна и бодрствования;
- температуру;
- частоту пульса и артериальное давление;
- половые функции и размножение;
- жизненные циклы клеток;
- смену жизненных периодов (детство, пубертат, юношество и т.д.)
- иммунитет;
- рост и развитие;
- выработку других гормонов и поддержание гормонального равновесия в организме.
Также гормоны могут регулировать деятельность органов, расположенных удаленно от синтезирующей их железы; при этом даже предельно малые их концентрации– от10 -12 до 10 -6 –способны вызвать существенные изменения в работе органа.
Как работает эндокринная система
Разные внешние или внутренние раздражители действуют на чувствительные рецепторы. В результате формируются импульсы, которые действуют на гипоталамус (отдел головного мозга). В ответ на них в гипоталамусе вырабатываются биоактивные вещества, поступающие по локальным сосудам в другой отдел головного мозга – гипофиз.
В ответ на их поступление в гипофизе вырабатываются гормоны гипофиза. Они попадают в кровь и, достигнув с кровотоком конкретной эндокринной железы, стимулируют в ней синтез того или иного гормона. А затем уже этот гормон поступает с кровью к гормональным рецепторам органов-мишеней, как описано выше.
По химическому строению гормоны делят на 4 вида
Стероиды – производные холестерина. Вырабатываются в коре надпочечников (кортикоиды) и половых железах (андрогены, эстрогены). В эту же группу входит кальцитриол.
Производные жирных кислот– эйкозаноиды. К ним относятся простагландины – повышают чувствительность рецепторов к боли и воспалительным процессам, тромбоксаны – участвуют в процессах свертывания крови, лейкотриены – участвуют в патогенезе бронхоспазма.
Производные аминокислот, преимущественно тирозина – гормон стресса адреналин, предшественник адреналина норадреналин и гормоны щитовидной железы.
Белково-пептидные соединения – гормоны поджелудочной железы инсулин и глюкагон, а также гормон роста соматотропин и кортикотропин – стимулятор синтеза гормонов коры надпочечников. В эту же группу входит антидиуретический гормон вазопрессин, «гормон материнства» окситоцин и ТТГ и АКТГ.
По месту образования выделяют гормоны:
- гипофиза и гипоталамуса;
- щитовидной, паращитовидной и поджелудочной желез;
- ЖКТ и надпочечников;
- яичек и яичников;
- жировой ткани;
- предсердия.
По механизму действия различают гормоны:
- проникающие в клетки – изменяют биосинтез белка;
- не проникающие в клетки – изменяют активность ферментов;
- мембранного действия – изменяют скорость транспортирования соединений через клеточные мембраны.
По биологическим функциям различают гормоны, регулирующие:
- обмен белков, жиров и углеводов;
- водно-солевой обмен;
- обмен фосфатов и кальция;
- репродуктивные функции.
Функции основных гормонов в организме
Список по названиям
Тестостерон — вырабатывается и у мужчин, и у женщин. Отвечает:
- за половую функцию и образование сперматозоидов у мужчин;
- половое влечение;
- качество мышечной ткани;
- работоспособность и целеустремленность;
- рост волос;
- стрессоустойчивость;
- поведение и эмоции;
- выработку эритроцитов и гемоглобина в крови;
- депонирование кальция в костной ткани.
Эстрогены – женские половые гормоны. Отвечают за формирование первичных половых признаков у женщин. Обеспечивают репродуктивные функции и эмоциональное состояние. У мужчин вырабатываются в жировой ткани живота из тестостерона. Стимулируют синтез коллагена и обеспечивают эластичность кожи. Принимают участие в работе кровеносной системы.
Прогестерон – сохраняет беременность и обеспечивает менструальный цикл у женщин. Кроме этого, и у женщин, и у мужчин он:
- является предшественником кортизола;
- повышает уровень ионов магния в крови и головном мозге;
- подавляет разрушение гормона счастья — серотонина;
- защищает миелиновые оболочки нервных волокон;
- оказывает успокаивающее действие;
- поддерживает нормальную трофику всех структур организма.
Дигидроэпиандростерон – вырабатывается в головном мозге и надпочечниках.
- повышает иммунитет;
- является предшественником половых гормонов;
- оказывает антистрессовое и антидепрессивное действие;
- улучшает память, тормозит развитие болезни Альцгеймера;
- отвечает за увеличение мышечной массы;
- активирует образование фолликулов в яичниках;
- улучшает качество костной ткани и препятствует развитию остеопороза.
Д-гормон (так называемый витамин Д):
- оказывает антиоксидантное и противоопухолевое действие;
- регулирует обмен фосфора и кальция, за счет чего препятствует развитию остеопороза у взрослых и рахита у детей;
- обладает противовоспалительным и иммуномодулирующим эффектом;
- улучшает работу сердечно-сосудистой системы;
- препятствует развитию осенне-весенних депрессий;
- улучшает созревание половых клеток;
- улучшает жировой обмен;
- повышает чувствительность клеток к инсулину;
- необходим при лечении псориаза.
ТТГ — тиреотропный гормон гипофиза. Регулирует выработку гормонов щитовидной железы трийодтиронина Т3 и тироксина Т4. При дисбалансе гормонов щитовидной желез развиваются гипер- и гипотиреоз.
Инсулин – отвечает за усвоение глюкозы клетками. Стимулирует мышечный рост и аппетит. При нехватке инсулина развивается сахарный диабет. Избыток инсулина приводит к инсулинорезистентности (снижение чувствительности инсулинозависимых клеток к действию инсулина с последующим нарушением метаболизма глюкозы и поступления ее в клетки), что ведет к ожирению и развитию сахарного диабета 2 типа.
Дигидротестостерон – влияет на рост волос, образование акне, увеличение простаты у мужчин.
Кортизол – образуется из прогестерона. Адаптирует организм к влиянию стресса, защищает от воспалений, аллергических реакций, поддерживает в норме артериальное давление.
Альдостерон – гормон коры надпочечников; образуется из прогестерона. Отвечает за обмен солей и воды в организме.
ПТГ (паратиреоидный гормон) — вырабатывается в паращитовидных железах. Отвечает за кальце-фосфорный обмен.
СТП (соматотропный гормон) – гормон роста, избыток которого ведет к развитию акромегалии.
В каких случаях нужно сдавать анализы на гормоны
Если баланс эндокринной системы нарушается, в организме развиваются изменения. Нередко достаточно предельно малых отклонений от нормы, чтобы запустить патологический процесс.
Достаточно долго такие патпроцессы могут протекать бессимптомно. Когда же появляется симптоматика, то нередко патогенез уже необратим. Чтобы выявлять бессимптомные гормональные нарушения на ранних стадиях современная доказательная медицина настоятельно рекомендует пакетные проверки. Один раз в 6-12 месяцев достаточно сдать кровь на анализ, чтобы оценить состояние эндокринной системы и не допустить развития гормональных заболеваний.
Кроме этого, о необходимости сдать анализ на гормоны может свидетельствовать ряд признаков:
- увеличение массы тела;
- бесплодие;
- нарушение функций внутренних органов;
- расстройства либидо;
- подозрение на наличие новообразований;
- избыточный рост волос на лице или теле;
- угревая болезнь;
- нарушения менструального цикла у женщин.
Также обязательно контролировать уровень гормонов при беременности, чтобы не допустить аномалий развития плода.
При планировании беременности необходимо пройти обследование щитовидной железы: сделать УЗИ щитовидной железы, пройти исследования гормонов ТТГ, Т4 свободный (свободный тироксин) и АТ к ТПО (антитела к тиреопероксидазе)
Во время беременности, если есть нарушение функций щитовидной железы, необходимо 1 раз в триместр проводить скрининг гормона ТТГ и консультироваться у эндокринолога.
Источник