Способы торможения трехфазного асинхронного двигателя

Способы торможения асинхронных двигателей

Лекция 18.

Асинхронная машина, подключенная к трехфазной сети, может работать в режимах двигателя (0 1, квадрант IV).

В режиме электромагнитного тормоза направления вращения полей статора и ротора противоположны и режим называют торможением противовключением. Такое торможение достигается изменением направления вращения поля статора. При этом характеристика Е1 заменяется обращенной характеристикой Е2. Для уменьшения токов АД одновременно уменьшают напряжение статора (характеристика И2). Рабочая точка из а1 по горизонтали скачком переходит в а2 и затем по характеристике И2 движется вниз. При достижении точки а3 (n = 0) АД нужно отключить от сети, иначе начнется реверс. При активном моменте МС (груз в подъемнике) возможен второй способ торможения противовключением: в цепь ротора вводится большое сопротивление (характеристика И1) и АД включается на подъем. Под действием преобладающего момента МС > Мп из точки а4 начнется спуск груза с подтормаживанием. В точке а5 пересечения характеристик И1 и МС установится частота спуска –n2 (тормозной спуск).

Характеристики торможения противо- включением

Рекуперативное торможение возникает, если двигатель переходит в

Этот вид торможения наблюдается в частотно-управ­ляемых двигателях при понижении частоты f1, а также в многоскоростных двигателях при переходе на низкую скорость.

Например, при увеличении числа пар полюсов характеристика Е1 заменяется на Е2, при этом рабочая точка а1 по горизонтали скачком переходит в точке а2 и далее по характеристике Е2 плавно в точке а3, а4. Участок а2а3 является генераторным. Ему соответствует торможение (М n1, т. е. переходит в генераторный режим, при этом кинетическая энергия груза преобразуется в электрическую энергию и отдается в сеть.

Динамическое торможение осуществляют отключением обмоток статора от трехфазной сети и подключением к источнику постоянного напряжения U0 (рисунок а). Постоянный ток I0 обмоток статора создает неподвижное магнитное поле, под действием которого в обмотке вращающегося по инерции ротора индуцируются токи, создающие тормозной момент. Искусственные механические характеристики в режиме динамического торможения (рисунок б) можно регулировать изменением сопротивлений R0 или Rд в цепи ротора (кривая 1). Кривая 2 соответствует двигателю с короткозамкнутым ротором.

Динамическое торможение: а – схема; б – характеристики

Рабочими характеристиками АД называют зависимости частоты вращения n, момента на валу М, тока статора I1, КПД η и cosφ1 от полезной мощности Р2 при U1ном, f1ном .

Рабочие характеристики асинхронного двигателя

Характеристика n(Р2) по форме близка к механической характеристике n(М) и является жесткой. Характеристика М(Р2) близка к линейной, поскольку n и Ω изменяются мало. Зависимость I1(Р2) начинается с точки I0 холостого хода, который для АД составляет (0,25¸0,35)I1ном. Мощность всех потерь в АД складывается из мощности постоянных потерь (механические и потери из-за вихревых токов и гистерезиса) и мощности переменных потерь (нагрев обмоток статора и ротора). КПД η достигает максимума при равенстве постоянных и переменных потерь. У АД это условие выполняется при наиболее вероятной нагрузке, т. е. при Р2 = (0,6¸0,7)Р2ном. КПД микромашин составляет 0,4¸0,6, машин малой и средней мощности – 0,7¸0,9, мощных машин – 0,9¸0,95. Коэффициент мощности cosφ1 на холостом ходе низок (не более 0,2). С ростом нагрузки он растет и достигает максимума при Р2 » Р2ном. Для двигателей малой и средней мощности при полной загрузке cosφ1 = 0,7¸0,9, при Р2 > 100 кВт cosφ1 = 0,9¸0,95. Значениям cosφ1 = 0,7¸0,9 соответствуют значения sinφ1 = 0,7¸0,3, т. е. даже при полной загрузке доля реактивного тока статора составляет 70–30%. При неполной загрузке АД cosφ1 существенно снижается, а в режимах, близких к холостому ходу, АД загружает сеть в основном реактивным током. Поэтому полная загруженность АД – необходимая мера по повышению cosφ промышленных предприятий.

Читайте также:  По способу питания эвглена зеленая является миксотрофом

Источник

Торможение электродвигателя

Подписка на рассылку

Производственные процессы, связанные с эксплуатацией оборудования, оснащенного электрическими двигателями переменного или постоянного тока, требуют периодической остановки. Однако после отключения питающего напряжения от электродвигателей, их роторы продолжают вращение по инерции и останавливаются только через определенный промежуток времени. Такая остановка электродвигателя называется свободным выбегом.

Для электродвигателей, работающих с частыми пусками-остановами, остановка способом свободного выбега не подходит. Чтобы сократить время, необходимое для полной остановки вращения ротора применяется принудительное торможение. Способы торможения электродвигателя подразделяются на механические и электрические.

Механическое торможение

Остановка двигателей при таком способе торможения осуществляется благодаря специальным колодкам на тормозном шкиве. После отключения питающего напряжения тормозные колодки под воздействием пружин прижимаются к шкиву. В результате возникающего трения колодок о шкив кинетическая энергия вращающегося вала преобразуется в тепловую, что и приводит к его полной остановке. После подачи напряжения электромагнит (YB) растормаживает колодки, и эксплуатация электродвигателя продолжается в штатном режиме.

В зависимости от схемы электрического торможения, кинетическая энергия вращающегося ротора может отдаваться в сеть или на батарею конденсаторов, а также преобразовываться в тепло, которое поглощается обмотками электродвигателя или специальными реостатами.

Динамическое торможение электродвигателя

Эта схема остановки подходит для трехфазных электродвигателей как с которкозамкнутым, так и с фазным ротором.

Динамическое торможение электродвигателя с короткозамкнутым ротором осуществляется посредством отключения обмоток статора от питающей сети трехфазного переменного тока и переключением двух из них через систему контакторов и реле на источник выпрямленного постоянного напряжения.

Обмотки статора после подачи на них постоянного напряжения генерируют стационарное магнитное поле, под воздействием которого в короткозамкнутой «беличьей клетке»

вращающегося ротора начинает индуцироваться электрический ток, вызывающий появление томозного момента. Направление этого момента противоположно направлению вращения останавливающегося вала. После остановки двигателя подача постоянного напряжения на обмотки статора прекращается.

В двигателях с фазным ротором величину тормозного момента можно регулировать с помощью дополнительных сопротивлений, в качестве которых используются пусковые резисторы.

Торможение противовключением

Торможение асинхронного электродвигателя методом противовключения осуществляется путем реверсирования двигателя без отключения от питающей сети.

Управление торможением выполняется реле контроля скорости. В рабочем режиме контакты реле замкнуты. После нажатия на кнопку «СТОП» (SBC) группа контакторов производит переключение двух фаз, меняя порядок их чередования. В результате этого магнитное поле статора начинает вращаться в противоположном направлении, что приводит к замедлению вращения ротора. Когда скорость вращения становится близкой к нулю, реле контроля скорости размыкает контакты и подача питающего напряжения прекращается.

Конденсаторное торможение электродвигателей

Этот способ, называемый еще торможение с самовозбуждением, применим только к электродвигателям с короткозамкнутым ротором.

После прекращения подачи питающего напряжения ротор электродвигателя продолжает вращение по инерции и генерирует в обмотках статора электрический ток, который вначале заряжает батарею конденсаторов, а после накопления номинального заряда возвращается в обмотки. Это приводит к возникновению тормозного момента, величина которого зависти от емкости конденсаторных батарей, подключенных к каждой фазе по схеме «звезда» или «треугольник». Торможение с самовозбуждением применяется на двигателях с большим числом пусков-остановов, так как величина потерь энергии в двигателях при такой схеме остановки минимальная.

Рекуперативное торможение

Рекуперативное или иначе генераторное торможение асинхронных электродвигателей на практике используется в качестве предварительного подтормаживания , а также при опускании грузов кранами всех типов или пассажирских и грузовых лифтовых кабин.

Торможение асинхронного электродвигателя в рекуперативном режиме происходит, когда номинальная частота вращения ротора превышает его синхронную частоту. Двигатель начинает генерировать электрическую энергию и отдавать ее в питающую сеть, в результате чего создается тормозящий момент. Такой способ остановки применяется для многоскоростных двигателей путем постепенного переключения с большей частоты вращения ротора на меньшую. Таким образом, в определенный момент скорость, вращающегося под воздействием инерции вала, будет больше синхронной частоты, соответствующей подключенному количеству полюсов статора. Кроме того, рекуперативная схема торможения применяется для двигателей, подключенных к преобразователям частоты. Для этого достаточно уменьшить частоту питающего напряжения.

Читайте также:  Такого способа толкования права не существует тест

Остановка двигателей постоянного тока (ДПТ)

Торможение электродвигателей постоянного тока осуществляется противовключением и динамическим способом.

Динамическое торможение

Такая схема торможения применяется для двигателей с независимым возбуждением.

После нажатия кнопки «Стоп» (SB1) происходит отключение обмоток якоря от питающей сети и переподключение их на тормозной резистор. В обмотках якоря, вращающегося по инерции в стационарном магнитном поле, индуцируется постоянный ток, который проходя по обмоточным проводам резистора, преобразовывается в тепловую энергию.

Торможение противовключением

Метод противовключения основан на изменении полярности напряжения, подключаемого к обмоткам индуктора или якоря двигателя. Это приводит к смене полярности магнитного потока или направлению тока, индуцируемого в якоре. Таким образом, направление вращающего момента меняется на противоположное, что вызывает появление тормозящего эффекта. Скорость вращения якоря контролируется реле скорости, которое отключает питание якоря, когда она приближается к нулевой.

Источник

Виды и схемы динамического торможения асинхронного двигателя

Электропривод является основой практического большинства современных механизмов. Одной из форм его работы является динамическое торможение асинхронного двигателя. Почему этот режим имеет такое значение и как он организовывается, попытаемся разобраться в этой статье.

Асинхронный двигатель и его работа

Очевидно, что режимы функционирования электродвигателей асинхронного типа напрямую зависят от их конструкции и общих принципов работы. Этот силовой агрегат совмещает в себе два ключевых компонента:

  1. Неподвижный статор. Пластинчатый цилиндр, в продольные пазы на внутренней поверхности которого укладывается проволочная обмотка,
  2. Вращающийся ротор. Совмещенный с валом сердечник (магнитопровод), который содержит прутковую обмотку на внешней стороне.

За счет различных частот вращения статора и ротора между ними возникает ЭДС, которая приводит вал в движение. Стандартное значение этого параметра может достигать 3000 об/мин, что требует определенного усилия для ее остановки. Из логических соображений можно заключить, что раз стартует двигатель за счет ЭДС, то и останавливать его тоже нужно электродинамическим путем.

Что такое динамическое торможение?

На этом месте может возникнуть закономерный вопрос: зачем что-то придумывать, если можно отключить двигатель от электросети, и он сам остановится? Это бесспорно так, но учитывая высокую частоту вращения и массо-центровочные характеристики, пройдет некоторое время до того момента, когда ротор полностью остановится. Этот период называется свободным выбегом и каждый в детстве его наблюдал, запуская простую юлу. Тем не менее, если работа оборудования предполагает частое использование пускателей, то такой режим приводит к очевидной потере времени.

Для быстрой остановки используются режимы торможения, которые предполагают трансформацию механической (в данном случае – кинетической) энергии искусственным путем. Все выделяют два основных вида торможения, которые подразделяются затем на подвиды:

  1. Механическое. Вал двигателя сообщается физически с тормозными колодками, вследствие чего возникает трение, быстрая остановка и выделение теплоты,
  2. Электрическое. Асинхронный двигатель останавливается за счет преобразования цепи подключения, вследствие чего механическая энергия трансформируется сперва в электрическую. Далее возможны два варианта ее израсходования, зависящие от схемы: либо избыток электричества выбрасывается в резервную цепь сети, либо трансформируется в тепло, за счет нагрева обмоток и сопротивления.

Динамическое торможение асинхронного двигателя относится к электрическому типу, так как в процессе обмотка статора отключается от сети с переменным током (две из трех фаз) и переводится в замкнутую цепь постоянного тока. При этом магнитное поле в статоре преобразуется из вращающегося в неподвижное. В роторе по-прежнему будет наводиться ЭДС, но момент будет направлен в обратную сторону, что приводит к торможению.

Читайте также:  Способы разделения гетерогенных смесей примеры

Классическая схема, как можно видеть на иллюстрации, предусматривает отключение от сети одной фазы контактором КМ1. При этом две другие фазы за счет контактора КМ2 переключаются в цепь с постоянным током через диодный мост.

Главным преимуществом такого способа торможения является возможность плавно контролировать тормозящий момент (за счет изменения напряжения или сопротивления) и осуществлять точную остановку.

Основные виды динамического торможения

Организация принудительной остановки асинхронного двигателя по электрическому принципу может быть осуществлена несколькими способами:

  1. Электродинамическим. Это классический вариант, при котором две фазы нужно закоротить и перевести на питания от цепи постоянного тока,
  2. Рекуперативным (генераторным). Характеризуется возвратом лишней электроэнергии в сеть,
  3. Противовключением. Этот вариант реализуется по схеме реверса, то есть с подключением фаз через пару магнитных пускателей,
  4. Самовозбуждением. Подключением к обмоткам статора батареи конденсаторов.

Виды динамического торможения

Классическое динамическое торможение

Эффективность такого режима работы зависит от расчета и значения следующих параметров:

  1. Величина тока, который подается через параллельную цепь на обмотки статора. Чем выше этот показатель, тем больше момент торможения,
  2. Величина сопротивления, которое вводится в цепь ротора. Чем выше по расчету сопротивление, тем быстрее тормозится двигатель,
  3. Величина магнитной движущей силы (МДС). Иногда ее называют ампер витками, поскольку расчет ведется по формуле F = I×W, где I – величина тока, а W – количество витков.

Обмотка статора при этом может подключаться как минимум пятью разными способами:

  1. Треугольником,
  2. Треугольником с закороченными фазами,
  3. Звездой,
  4. Звездой с закороченным нулем,
  5. Звездой с закороченными двумя фазами.

В каждом случае на основании векторной диаграммы ведется расчет МДС, тормозного сопротивления и напряжения цепи.

Рекуперативное торможение

Режим рекуперативного торможения

Поскольку избыток электроэнергии, который высвобождается в процессе торможения, направляется обратно в сеть через мост/батарею конденсаторов, то этот режим работы считается наиболее экономичным. Наиболее часто этот способ применяется в подъемно-транспортной технике и оборудовании, которое работает на перемещение грузов или собственного веса под уклон. Классический пример – лифт, где рекуперативное торможение приводного двигателя используется для начального подтормаживания. Также подобная схема широко используется в электрифицированном транспорте, например, в трамваях, троллейбусах, электричках. Применяют ее и в специальной технике, например, экскаваторах, широко используемых на строительстве мостов, дорог, зданий и т. п.

Принцип расчета и организации генераторного режима заключается в превышении частотой вращения ротора ее синхронного значения. В таком случае электромагнитный момент меняет направление, что приводит к торможению.

Торможение противовключением

Схема торможения противовключением

На практике режим противовключения может быть организован несколькими разными способами. Классическим является использование пары магнитных пускателей, подключенных по реверсной схеме. В этом случае, быстрая остановка агрегата осуществляется за счет изменения положения фаз (противовключение).

Основной пускатель КМ2 производит отключение двигателя М от сети. После этого параллельный пускатель КМ1 опять включает двигатель, меняя при это крайние фазы местами, то есть заставляя его вращаться в обратную сторону. Чтобы не допустить чрезмерного перегрева в цепь может быть введено дополнительное сопротивление. Также схема противовключения может быть реализована, если двигатель использовать в качестве тормоза для груза.

Торможение самовозбуждением

Схема торможения самовозбуждением

Этот вариант реализуется за счет подключения обмоток статора к параллельной конденсаторной батарее или мосту (расчет емкости придется вести). Когда двигатель отключается от сети и должен наступить режим выбега, угасающее магнитное поле начинает питать конденсаторы, а через них возвращается обратно в обмотку, создавая тормозной момент.

Как можно видеть, на практике используется целая гамма специфических режимов работы асинхронных двигателей, которыми можно добиться быстрой и точной его остановки. При частых пусках и остановках динамическое, рекуперативное, реверсное (на пускателях) или конденсаторное торможение (через расчет моста или батареи) могут повысить эффективность работ оборудования и снизить потери времени.

Источник

Оцените статью
Разные способы