- Метод нейтрализации
- Индикаторы метода нейтрализации
- Приготовление рабочих растворов и установка их титров
- Метод нейтрализации в титриметрическом методе анализа
- Аналитическая химия — наука об определении химического состава веществ и их химической структуры. Понятие и сущность титриметрического метода анализа. Способы приготовления титрованного раствора. Методы кислотно-основного титрования (нейтрализации).
Метод нейтрализации
Для выполнения определений по методу нейтрализации применяют титрованные растворы кислот (серной, соляной или азотной) и растворы щелочей (гидроксидов натрия, калия или бария). Для установления точки эквивалентности применяют индикаторы, изменяющие окраску в определенной области pH.
Индикаторы метода нейтрализации
Метиловый оранжевый. Область перехода окраски при pH 3,1-4,4. Для титрования берут 1-2 капли раствора на 20-25 мл титруемого раствора. Для приготовления раствора индикатора растворяют 2 г сухого метилового оранжевого (метилоранжа) в 1 л воды. Переход окраски от красной к желтой.
Метиловый красный. Область перехода окраски при pH 4,2-6,2. Дает более резкий переход окраски, чем метиловый оранжевый. Для титрования применяют не более одной капли 0,2%-ного этанольного раствора на 25 мл титруемого раствора, при больших количествах индикатора переход окраски труднее заметен. Переход окраски от красной к желтой.
Фенолфталеин. Область перехода окраски при pH 8,2-10,0. Для титрования используют 1-2 капли 1%-ного этанольного (70%-ного) раствора индикатора на 25 мл титруемого раствора. Переход окраски от красного к бесцветному. Красная (розовая) окраска легко обесцвечивается под действием CO2, выделяющегося в результате реакции. Оттитрованные до розовой окраски растворы при стоянии могут также обесцветиться под действием CO2 воздуха. Применяют при титровании слабых кислот. Имеются и другие индикаторы.
Приготовление рабочих растворов и установка их титров
Приготовление 0,1 н. раствора серной кислоты. Эквивалент серной кислоты ЭH2SO4 = 98,08 : 2 = 49,04 г. Для приготовления 0,1 н. раствора необходимо получить раствор, содержащий в 1 л 49,04 * 0,1 = 4,90 г H2SO4. Раствор готовят приближенной концентрации из разбавленной 1:2 или 1:5 серной кислоты; далее точную нормальность раствора устанавливают титрованием. Для приготовления 1 л 0,1 н. раствора H2SO4 необходимо 16,8 мл кислоты плотностью 1,18 г/см3 (разбавленной 1:5) или 8,1 мл кислоты плотностью 1,35 г/см3 (разбавленной 1:2) разбавить водой в мерной колбе вместимостью 1 л до метки.
Для вычисления объема исходной серной кислоты, необходимой для приготовления 1 л 0,1 н. раствора H2SO4, нужно 0,1 эквивалента H2SO4 (4,9 г) умножить на 100 и разделить на процентное содержание H2SO4 в кислоте. Получают навеску кислоты в граммах; разделив ее на плотность, получают объем в миллилитрах.
Установка титра и нормальности 0,1 н. раствора серной кислоты. По тетраборату натрия Na2B4O7-10H2O. Тетраборат натрия гидролизуется в водном растворе с образованием ионов OH-:
которые и титруются кислотой. Поскольку ионы гидроксила связываются ионами водорода, реакция протекает до конца. Суммарно реакцию можно представить следующим уравнением:
Эквивалент тетрабората натрия в этой реакции равен 1/2 моля, а его масса равна Э = 381,37 / 2 = 190,69 г/моль. Чтобы препарат тетрабората натрия соответствовал формуле Na2B4O7-10H2O, его перекристаллизовывают. Для этого растворяют 140-150 г тетрабората натрия в 300 мл воды при нагревании не выше 60 °С. Раствор фильтруют через складчатый фильтр в фарфоровую чашку, охлаждаемую льдом. Фильтрат помешивают стеклянной палочкой, выделившиеся кристаллы отфильтровывают с отсасыванием, промывают небольшим количеством холодной воды и повторяют перекристаллизацию. Полученные кристаллы высушивают на воздухе 2-3 дня. Продаваемые препараты не соответствуют своей формуле из-за выветривания.
Для установки титра кислоты нужно взять такую навеску тетрабората натрия, чтобы на нее было израсходовано примерно 25 мл раствора кислоты. Навеска будет составлять: 191 * 0,1 * 25 : 1000 = 0,5 г.
Для установки титра кислоты берут 3-4 конические колбы вместимостью 100-150 мл и помещают в каждую точную навеску (около 0,5 г) тетрабората натрия. Каждую навеску растворяют примерно в 50 мл воды при слабом нагревании. Добавляют сначала в раствор одной из навесок 2-3 капли раствора индикатора метилового красного или метилового оранжевого. Раствор приобретает желтую окраску. Титруют приготовленным раствором (примерно 0,1 н.) кислоты до появления розового (с метиловым красным) или оранжевого (с метиловым оранжевым) окрашивания. Титрование ведут, сначала прибавляя раствор кислоты из бюретки малыми порциями при непрерывном перемешивании, затем осторожно титруют быстро падающими каплями, под конец титрование замедляют, последние капли добавляют по одной после сильного взбалтывания. Меньшую навеску следует титровать первой, потому что это даст приблизительную ориентировку в расходовании раствора на последующие навески. Такой способ установки титра называется методом отдельных навесок.
Для установки титра методом пипетирования готовят точно 0,1 н. раствор тетрабората натрия. Для этого точную навеску (19,07 г на 1 л или 4,760 г на 250 мл) тетрабората натрия взвешивают на часовом стекле и переводят в мерную колбу через воронку. Воронку и часовое стекло обмывают из промывалки струей горячей воды, затем колбу наполняют водой на 2/3 объема. Взбалтывая содержимое колбы круговыми движениями, растворяют навеску, после чего охлаждают до комнатной температуры, разбавляют водой до метки и перемешивают.
Отбирают пипеткой 25,0 мл приготовленного раствора тетрабората натрия в колбу для титрования, добавляют 2-3 капли раствора индикатора (метилового оранжевого или метилового красного) и титруют раствором кислоты, как и в случае отдельных навесок. Рекомендуется титровать со «свидетелем». Для приготовления «свидетеля» в колбу для титрования наливают мензуркой 50 мл воды, две капли раствора индикатора и одну каплю кислоты из бюретки, чтобы появилось очень слабое, но вполне заметное оранжевое или розовое окрашивание. Титрование тетрабората проводят до появления такой же интенсивности окраски, как у «свидетеля».
Для вычисления нормальности раствора кислоты по методу отдельных навесок пользуются формулой
где N — определяемая нормальность кислоты; m — навеска тетрабората, г; Э — эквивалентная масса тетрабората, г/моль; V — объем раствора кислоты, затраченный на титрование навески, мл.
По каждой навеске вычисляют нормальность и находят ее среднее значение. При титровании методом пипетирования расчет ведут по формуле
где N — искомая нормальность раствора кислоты; N1 — нормальность раствора тетрабората натрия; V1 — объем раствора тетрабората натрия, мл; V — объем, раствора кислоты, мл.
Например, навеска тетрабората натрия 4,8024 г растворена в мерной колбе вместимостью 250 мл и разбавлена водой до метки. На 25,0 мл этого раствора было израсходовано (среднее из четырех титрований) 25,85 мл устанавливаемого раствора H2SO4. Нормальность приготовленного раствора тетрабората натрия находят по формуле
где m — навеска тетрабората, г; Э — эквивалентная масса тетрабората, г/моль; Vк — объем колбы с раствором тетрабората натрия, мл. Подставив в эту формулу приведенные значения, получим:
Нормальность раствора серной кислоты:
Титр раствора серной (или другой) кислоты можно устанавливать также то карбонату натрия или по стандартному раствору гидроксида.
Приготовление 0,1 н. раствора гидроксида натрия (едкого натра). Для приготовления нужно пользоваться химически чистым реактивом (хч). Навеску берут несколько большей, чем требуется по расчету (на 30-50%). Взвешивают на химических лабораторных весах, отбирая шпателем свежие куски. Навеску помещают в фарфоровый стакан и дважды быстро промывают ее водой для удаления карбоната. Обмытые куски щелочи растворяют в небольшом количестве воды, переливают в склянку, предназначенную для хранения раствора щелочи, и разбавляют до необходимого объема прокипяченной (для удаления CO2) и затем охлажденной дистиллированной водой.
Растворы едкого натра (как и других щелочей) сильно поглощают CO2 из воздуха и изменяют свой титр. Поэтому растворы щелочей хранят в герметически закрытых склянках, защищая их от действия CO2 воздуха пробкой с хлоркальциевой трубкой, заполненной натронной известью; бюретку присоединяют к бутыли с помощью сифона.
Установление титра и нормальности 0,1 н. раствора гидроксида натрия. По щавелевой кислоте H2C2O4-2H2O. Щавелевая кислота взаимодействует со щелочью по уравнению
Эквивалент щавелевой кислоты равен 1/2 моля, а его масса
Для установления нормальности методом отдельных навесок растворяют 0,25 г (точную навеску) свежеперекристаллизованной щавелевой кислоты в 25 мл воды, добавляют 1-2 капли раствора фенолфталеина и титруют раствором NaOH до появления устойчивого розового (малинового) окрашивания. Нормальность вычисляют по формуле, приведенной выше. Нормальность можно установить методом пипетирования.
Для титрования можно применять только свежеприготовленный 0,1 н. раствор щавелевой кислоты. Раствор щавелевой кислоты неустойчив при хранении, поэтому для разового пользования его готовят не более 250 мл.
По янтарной кислоте HOOC-CH2-CH2-COOH. Янтарная кислота не содержит кристаллизационной воды, не гигроскопична. Продажные препараты квалификации хч или чда содержат не менее 99,9% основного вещества. Эквивалент янтарной кислоты равен 1/2 моля, а его масса 59,04 г/моль.
Для определения нормальности раствора NaOH растворяют 0,20-0,25 г янтарной кислоты (точное взвешивание) в 25 мл воды, добавляют 2-3 капли раствора фенолфталеина и титруют раствором NaOH до появления розового окрашивания, не исчезающего в течение 1 мин. Для устранения влияния CO2 раствор кипятят и титруют горячим. Титр устанавливают по отдельным навескам, так как янтарная кислота неустойчива при хранении в растворе. Нормальность можно устанавливать также по стандартному раствору кислоты с известным титром.
Источник
Метод нейтрализации в титриметрическом методе анализа
Аналитическая химия — наука об определении химического состава веществ и их химической структуры. Понятие и сущность титриметрического метода анализа. Способы приготовления титрованного раствора. Методы кислотно-основного титрования (нейтрализации).
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 22.02.2012 |
КЫРГЫЗСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. Ж. БАЛАСАГЫНА
ФАКУЛЬТЕТ ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИ
Кафедра ЮНЕСКО по экологическому образованию и естественным наукам
по дисциплине Аналитическая химия
МЕТОД НЕЙТРАЛИЗАЦИИ В ТИТРИМЕТРИЧЕСКОМ МЕТОДЕ АНАЛИЗА
Студентки II курса гр. хт-1-08
ФИО Байтанаевой А.
Преподаватель доцент Ли С.П.
Аналитическая химия. Методы определения
Титриметрический метод анализа
Приготовление титрованного раствора
Методы установления точек эквивалентности. Классификация методов титриметрического анализа
Посуды, применяемые для титрования
Вычисления в объемном анализе
Статистическая обработка результатов анализа
Методы кислотно-основного титрования, или методы нейтрализации
Аналитическая химия является фундаментальной химической наукой, занимающей видное место в ряду других химических дисциплин. Вместе с тем аналитическая химия теснейшим образом связана с повседневной практикой, поскольку без данных анализа о содержании в сырье или конечном продукте основных компонентов и примесей невозможно грамотное проведение технологического процесса в металлургической, химической, фармацевтической и многих других отраслях промышленности.
Данные химического анализа требуются при решении экономических и других важных вопросов.
Современное развитие аналитической химии, обусловленное в значительной мере прогрессом различных отраслей производства.
Аналитическая химия. Методы определения
аналитический химия титриметрический нейтрализация
Аналитическая химия- это наука об определении химического состава веществ и отчасти их химической структуры. Методы, которые создает аналитическая химия, позволяют отвечать на вопросы о том, из чего состоит вещество, какие компоненты входят в его состав. Аналитические методы часто дают возможность узнавать, в какой форме данный компонент присутствует в веществе, например, каково состояние окисления элемента.
Методы определения можно классифицировать, основываясь на свойстве вещества, которое положено в основу определения. Если измеряется масса осадка, метод называется гравиметрическим, если определяется интенсивность окраски раствора, — фотометрическим, а если величина ЭДС,- потенциометрическим.
Методы определения часто делят на химические(классические), физико-химические(инструментальные) и физические.
Химическими в аналитической химии принято называть главным образом гравиметрические и титриметрические методы. Эти методы наиболее старые, но широко распространенные до настоящего времени, играющие важную роль в практике химического анализа.
Гравиметрический (весовой) анализ — измерение массы определяемого вещества или его составных частей, выделяемых в химически чистом состоянии или в виде соответствующих соединений.
Титриметрический (объемный) анализ — измерение объема израсходованного на реакцию реактива точно известной концентрации.
Физико-химические и физические методы анализа обычно делят на следующие группы
2) спектральные (оптические)
Титриметрический метод анализа
Титриметрическим методом анализа называют метод количественного анализа, основанный на измерении количества реагента, требующегося для завершения реакции с данным количеством определяемого вещества.
Метод заключается в том, что к раствору определяемого вещества постепенно прибавляют раствор реактива известной концентрации. Добавление реактива продолжают до тех пор, пока его количество не станет эквивалентным количеству реагирующего с ним определяемого вещества.
Количественные определения с помощью объемного метода выполняются очень быстро. Время, требуемое для завершения определения титриметрическим методом, измеряется минутами. Это позволяет без особой затраты труда проводить несколько последовательных и параллельных определений.
Основоположником титриметрического анализа является французский ученый Ж.Л.Гей-Люссак.
Химический элемент, простое или сложное вещество, содержание которого определяют в данном образце анализируемого продукта, называют определяемым веществом.
К определяемым веществам относят также атомы, ионы, связанные свободные радикалы и функциональные группы.
Твердое, жидкое или газообразное вещество, вступающее в реакцию с определенным веществом, называют реагентом.
Титрование — это приливание одного раствора к другому при непрерывном смешивании. Концентрация одного раствора точна известна.
Титрант (стандартный или титрованный раствор) — это раствор с точно известной концентрацией.
Нормальность раствора N — количество грамм-эквивалента вещества, содержащегося в 1л раствора.
Титр (Т) — точная концентрация стандартного раствора (титранта).
Выражают числом граммов растворенного вещества, содержащегося в 1мл раствора, г/мл.
В аналитической химии титр — один из способов выражения концентрации раствора.
N- нормальность раствора, г-экв/л
Э- эквивалент растворенного вещества
Т- титр, г/см 3 (мл).
Химические элементы или их соединения вступают в химические реакции друг с другом в строго определенных весовых количествах, соответствующих их химическим эквивалентам (грамм-эквивалентам).
Другими словами, грамм-эквивалент одного вещества реагирует с одним грамм-эквивалентом другого вещества.
Приготовление титрованного раствора по точной навеске исходного вещества
Первым способом приготовления раствора точно известной концентрации, т.е. характеризующегося определенным титром, является растворение точной навески исходного химически чистого вещества в воде или другом растворителе и разбавление полученного раствора до требуемого объема. Зная массу растворенного в воде химически чистого соединения и объем полученного раствора, легко вычислить титр (Т) приготовленного реактива, в г/мл:
Этим способом готовят титрованные растворы таких веществ, которые можно легко получить в чистом виде и состав которых отвечает точно определенной формуле и не изменяется в процессе хранения. Взвешивание вещества проводят в бюксе. Таким путем нельзя приготовить титрованные растворы веществ, которые отличаются большой гигроскопичностью, легко теряют кристаллизационную воду, подвергаются действию двуокиси углерода воздуха и т.д.
Приготовление титрованных растворов по «фиксаналу»
Очень часто на практике для приготовления титрованных растворов используют приготовленные на химических заводах или в специальных лабораториях точно отвешенные количества твердых химически чистых соединений или точно отмеренные объемы их растворов определенной нормальности.
Указанные вещества помещают в специальные стеклянные ампулы и запаивают. Поступающие в продажу ампулы с содержащимся в них определенным количеством вещества называют фиксаналами.
Для приготовления требуемого титрованного раствора ампулу разбивают над специальной воронкой, снабженной пробивным устройством, содержимое ее количественно переводят в мерную колбу и доводят объем водой до метки.
Обычно в ампулах содержится 0,1г-экв вещества, т.е. столько, сколько требуется для приготовления 1л 0,1н. раствора.
Титрование проводят следующим образом. Бюретку заполняют рабочим раствором до нулевого деления так, чтобы в нижнем конце ее не было пузырьков воздуха. Исследуемый раствор отмеряют пипеткой и переносят в коническую колбу. Сюда же вливают несколько капель раствора индикатора, за исключением тех случаев, когда один из взятых растворов является индикатором. К раствору в колбе постепенно приливают раствор из бюретки до изменения окраски раствора в колбе. Сначала раствор из бюретки приливают тонкой струей, непрерывно перемешивая титруемый раствор вращением колбы. По мере титрования рабочий раствор приливают все медленнее и к концу титрования его добавляют уже по каплям.
Необходимо во время титрования левой рукой управлять зажимом бюретки, а правой одновременно вращать колбу с титруемой жидкостью, перемешивая, таким образом, титруемый раствор.
Результаты титрования будут правильными, если в конце титрования окраска титруемого раствора резко изменится от одной капли рабочего раствора. Чтобы переход окраски раствора был лучше заметен, колбу с титруемым раствором во время титрования помещают на белую подставку.
После каждого титрования отсчитывают по шкале бюретки объем затраченного рабочего раствора и результат отсчета записывают в лабораторный журнал. Каждый раствор титруют не менее трех раз, результаты титрования не должны отличаться друг от друга более чем на 0,1 мл. Концентрацию раствора вычисляют по среднему значению.
Индикаторами называются вещества, при помощи которых устанавливают момент эквивалентности между титруемыми растворами. В качестве индикаторов чаще всего применяют вещества, способные давать с одним из реагирующих веществ легко заметную цветную реакцию. Например, крахмал, взаимодействуя с раствором йода, окрашивается в интенсивно синий цвет. Следовательно, крахмал- индикатор на свободный йод. Один и тот же индикатор в различных условиях часто приобретает различную окраску. Например, фенолфталеин в кислой и нейтральной среде бесцветен, а в щелочной среде принимает красно-фиолетовую окраску.
Иногда индикатором служит непосредственно одно из реагирующих веществ. Например, раствор окислителя KMnO4 в кислой среде при постепенном прибавлении восстановителя к нему обесцвечивается. Как только в растворе появится избыточная капля KMnO4, раствор окрасится в бледно-розовый цвет.
Методы установления точек эквивалентности
Установление конечной точки титрования или точки эквивалентности представляет собой важнейшую операцию титриметрического метода анализа, так как от точности определения точки эквивалентности зависит точность результатов анализа. Обычно конец титрования устанавливают по изменению окраски титруемого раствора или индикатора, вводимого в начале или в процессе титрования. Применят также и безиндикаторные методы, основанные на использовании специальных приборов, позволяющих судить об изменениях, которые происходят в титруемом растворе в процессе титрования. Такие методы называют физико-химическими или инструментальными методами определения точек эквивалентности. Они основаны на измерении электропроводности, значений потенциалов, оптической плотности и других физико-химических параметров титруемых растворов, которые резко изменяются в точке эквивалентности.
Точку эквивалентности можно определить следующими методами:
1)визуально — по изменению цвета раствора, если определяемое вещество или реагент окрашены; так как в точке эквивалентности концентрация определяемого вещества уменьшается до минимума, а концентрация реагента начинает повышаться.
2) визуально — по появлению помутнения или по изменению окраски раствора, вызываемой образованием продуктов реакции, или индикатора, если они бесцветны.
3) физико-химическими методами с последующим анализом кривых титрования, отражающих происходящие в процессе титрования изменения физико-химических параметров титруемых растворов независимо от окраски. Точку эквивалентности устанавливают по пересечению кривых или по скачку кривой титрования.
1)Метод нейтрализации основан на использовании реакций нейтрализации кислот, оснований, солей слабых кислот или слабых оснований, сильно гидролизирующихся в водных растворах, разнообразных неорганических и органических соединений, проявляющих в неводных растворах кислые или основные свойства, и др.
2)Метод окисления-восстановления основан на использовании реакций окисления-восстановления элементов, способных переходить из низших степеней окисления в высшие, и наоборот, а также ионов и молекул, которые реагируют с окислителями или восстановителями, не подвергаясь непосредственному окислению или восстановлению.
3)Метод осаждения основан на использовании реакций осаждения.
4)Метод комплексообразования основан на использовании реакций комплексообразования, из которых наиболее широко применяют реакции ионов металлов с так называемыми комплексонами.
Посуды, применяемые для титрования
Мерные колбы служат для измерения объемов растворов, приготовления растворов определенной концентрации. Объем жидкости, вмещаемой колбой, выражают в миллилитрах. На колбе указывают ее емкость и температуру(20 0 С), при которой эта емкость измерена.
Мерные колбы бывают различной емкости: от 25 до 2000 мл.
Пипетки служат для отмеривания небольших объемов растворов и перенесения определенного объема раствора из одного сосуда в другой. Объем жидкости, вмещаемой пипеткой, выражают в миллилитрах. На расширенной части пипетки указывают ее емкость и температуру (обычно 20 0 С), при которой эта емкость измерена.
Пипетки бывают различной емкости от 1 до 100мл.
Измерительные пипетки небольшой емкости не имеют расширения и градуированы на 0,1-1мл.
Бюретки представляют собой узкие, градуированные по длине цилиндрические стеклянные трубки. Один конец бюретки сужен и снабжен стеклянным краном или резиновой трубкой, соединенной с капилляром, через который из бюретки выливается раствор. Резиновая трубка зажимается снаружи металлическим зажимом. При надавливании на зажим указательным и большим пальцами, из бюретки выливается жидкость.
Хорошо вымытую бюретку 2-3 раза ополаскивают дистиллированной водой, а затем раствором, которым ее будут наполнять. В капилляре крана не должно оставаться пузырьков воздуха. При отсчетах делений глаз наблюдателя должен находиться на уровне мениска. Объем светлых жидкостей отсчитывают по нижнему мениску, темных, например, KMnO4, I2,- по верхнему.
Вычисление в объемном анализе
Грамм-эквивалентом называется количество граммов вещества, эквивалентное (химически равноценное) грамм-атому или грамм-иону водорода в данной реакции. Из этого определения следует, что грамм-эквивалент одного и того же вещества в разных реакциях может быть различный. Например, Na2CO3 с кислотой может реагировать двояко
В реакции (1) одна грамм-молекула Na2CO3 реагирует с одной грамм-молекулой HCI, что соответствует одному грамм-атому водорода. В этой реакции грамм-эквивалент Na2CO3 равен молю М(Na2CO3), что выражается равенством Э(Na2CO3)= М(Na2CO3). В реакции (2) одна грамм-молекула Na2CO3 реагирует с двумя молями HCI. Следовательно,
Нормальные и молярные растворы
Нормальность раствора N — количество грамм-эквивалента вещества, содержащегося в 1л раствора.
Молярность раствора указывает, сколько молей растворенного вещества содержится в 1л раствора.
Зная концентрацию раствора, выраженную в граммах на определенный объем, можно вычислить нормальность и молярность его
Пример В 250 мл раствора гидроокиси кальция содержится 3,705 г Са (ОН)2. Вычислить нормальность и молярность раствора.
Решение Сначала вычислим, сколько граммов Са (ОН)2 содержится в 1л раствора
3,705г Са (ОН)2 — 250 мл Х=14,82 г/л
Х г Са (ОН)2 — 1000 мл
Найдем грамм-молекулу и грамм-эквивалент
37,05г/л — 1н. Х=0,4н.
74,10г/л — 1моль Х=0,2М
Зная нормальность или молярность раствора, можно вычислить его титр.
Пример Вычислить титр 0,1н. раствора H2SO4 по NaOH.
В объемном анализе применяют несколько методов вычисления.
1) Вычисление нормальности анализируемого раствора по нормальности рабочего раствора. При взаимодействии двух веществ NaOH грамм-эквивалент одного вещества реагирует с грамм-эквивалентом другого. Растворы различных веществ одной и той же нормальности содержат в равных объемах одинаковое число грамм-эквивалентов растворенного вещества. Следовательно, одинаковые объемы таких растворов содержат эквивалентные количества вещества. Поэтому, например, для нейтрализации 10 мл 1н. HCI требуется затратить ровно 10 мл 1н. раствора NaOH.
Растворы одинаковой нормальности вступают в реакцию в равных объемах.
Зная нормальность одного из двух реагирующих растворов и их объемы, расходуемые на титрование друг друга, легко определить неизвестную нормальность второго раствора. Обозначим нормальность первого раствора через N2 и его объем через V2. Тогда на основании сказанного можно составить равенство
Пример. Определить нормальность раствора соляной кислоты, если известно, что для нейтрализации 30,00 мл ее потребовалось 28,00 мл 0,1100 н. раствора NaOH.
2) Вычисление количества определяемого вещества по титру рабочего раствора, выраженному в граммах определяемого вещества. Титр рабочего раствора в граммах определяемого вещества равен числу граммов определяемого вещества, которое эквивалентно количеству вещества, содержащегося в 1 мл рабочего раствора. Зная титр рабочего раствора по определяемому веществу T= и объем рабочего раствора, израсходованного на титрование, можно вычислить число граммов (массу) определяемого вещества.
Пример. Вычислить процентное содержание Na2CO3 в образце, если для титрования навески 0, 100 гр. израсходовано 15,00 мл 0,1н. HCI.
Процентное содержание Na2CO3 равно
3) Вычисление числа миллиграмм-эквивалентов исследуемого вещества. Помножив нормальность рабочего раствора на объем его, израсходованный на титрование исследуемого вещества, получим число миллиграмм-эквивалентов растворенного вещества в оттитрованной части исследуемого вещества. Масса определяемого вещества равна
Статистическая обработка результатов анализа
При анализе веществ (проб) обычно проводят несколько параллельных определений. При этом отдельные результаты определений должны быть близкими по величине и соответствовать истинному содержанию компонентов (элементов) в исследуемом веществе (пробе).
Существуют два фактора, по которым аналитик судит о полученных результатах анализа
1) Воспроизводимость полученных результатов.
2) Соответствие их составу вещества (пробы)
Воспроизводимость результатов анализа зависит от случайных ошибок анализа. Чем больше случайная ошибка, тем больше разброс значений при повторении анализа. Случайная ошибка может иметь размерность измеряемых величин (мг, мг/л) или же может быть выражена в процентах. Следовательно, воспроизводимость определяет вероятность того, что результаты последующих измерений окажутся в некотором заданном интервале, в центре которого находится среднее значение всех определений, выполненных данным методом.
В отличие от случайных ошибок, систематические ошибки влияют на все измерения всегда в одинаковой степени.
Цель всех аналитических определений и исследований сводится к нахождению результатов, наиболее близких к истинному составу или к истинному содержанию компонентов пробы.
Для оценки точности или надежности результатов аналитических определений пользуются статистической обработкой результатов и вычисляют следующие величины
1) Среднее арифметическое
Среднюю квадратичную ошибку
3) Среднюю квадратичную ошибку среднего арифметического
4) Доверительный интервал
Методы кислотно-основного титрования, или методы нейтрализации
Методы нейтрализации основаны на применении реакций нейтрализации. Основным уравнением процесса нейтрализации в водных растворах является взаимодействие ионов гидроксония (или водорода) с ионами гидроксила, сопровождающееся образованием слабодиссоциированных молекул воды:
Методы нейтрализации позволяют количественно определять кислоты (с помощью титрованных растворов щелочей), основания (с помощью титрованных растворов кислот) и другие вещества, реагирующие в стехиометрических соотношениях с кислотами и основаниями в водных растворах.
Техника определения состоит в том, что к определенному количеству раствора основания (или кислоты) постепенно приливают из бюретки титрованный раствор кислоты (или основания) до наступления точки эквивалентности. Количество основания (или кислоты), содержащееся в исследуемом растворе, вычисляют по объему титрованного раствора кислоты (или основания), израсходованного на нейтрализацию определенного объема раствора анализируемого образца или навески исследуемого продукта.
Кислотность или щелочность раствора определяют c помощью индикаторов. Для проявления окраски достаточно добавить в исследуемый раствор всего лишь 1-2 капли 0,1% раствора индикатора. Цвета различных индикаторов в растворах кислот и щелочей приведены в таблице.
Таблица 1. Окраска индикаторов в растворах щелочей и кислот.
Цвет индикатора в растворах:
Индикаторы можно условно считать слабыми кислотами, соли которых в растворе имеют иную окраску. Эта окраска не зависит от атома металла, входящего в состав соли.
Рассмотрим конкретный пример. Пусть имеется раствор NaOH неизвестной концентрации. 10,0 мл этого раствора поместили в колбу и добавили 1 каплю слабого раствора фенолфталеина. Раствор окрасился в малиновый цвет (рис.1а).
Малиновый раствор титровали из бюретки с помощью 0,1 М раствора соляной кислоты HCl. Окраска раствора исчезла (рис.1б), когда из бюретки вылилось 16,4 мл кислоты.
Титрование сильной кислоты сильным основанием
А) Приготовление 0,1 н. раствора HCI
Для приготовления 0,1н. раствора HCI берут кислоту меньшей концентрации, примерно 20%-ную. Определяют плотность ее ареометром (она равна 1,140), для этого кислоту наливают в высокий стеклянный цилиндр, диаметр которого превышает диаметра шарика ареометра. Осторожно опускают ареометр в жидкость и следят за тем, чтобы он свободно плавал, не касаясь стенок цилиндра. Отсчет ведут по шкале ареометра. Деление шкалы, совпадающее с уровнем жидкости, показывает плотность раствора. Затем узнают процентную концентрацию (по справочнику) и рассчитывают, сколько этой кислоты следует брать, чтобы получить 500 мл 0,1н. раствора HCI.
Расчет навески на объем мерной колбы (250мл.)
m= = 36, 5 * 0, 1 * 0, 25=0, 92 гр.HCI.
100 гр. исходной кислоты содержится — 28,18 гр. х.ч. HCI.
Х гр. — 0,92 гр. HCI.
Х = 3,2 гр. х.ч. HCI.
Чтобы не отвешивать соляную кислоту, а отмерить мензуркой, вычислим объем 28,18%-ной кислоты, необходимый для приготовления раствора. Для этого массу 28,18%-ной кислоты делим на плотность
Затем отмеряют 2,8 мл кислоты, переносят в мерную колбу на 500 мл и доводят объем раствора до метки, и, закрыв колбу пробкой, перемешивают. Получив примерно 0,1 н. раствор HCI, устанавливают титр и нормальную концентрацию его по раствору тетрабората натрия.
Б) Приготовление 0,1н. раствора тетрабората натрия (буры)
Для определения титра раствора HCI берут кристаллогидрат тетрабората натрия. Это соль удовлетворяет почти всем требованиям, предъявляемым к исходным веществам, но относительно мало растворяется в холодной воде. Для установки титра HCI или серной кислоты используют перекристаллизованный продукт.
При растворении тетрабората натрия в воде протекает реакция гидролиза:
H2BO3 ионы, в свою очередь, подвергаются гидролизу:
OH — ионы оттитровываются кислотой, и гидролиз идет до конца. Суммарно реакцию титрования можно выразить уравнением:
Для растворения тетрабората натрия наливают в колбу примерно ? объема колбы дистиллированной воды, нагревают на водяной бане, перемешивая содержимое колбы вращательным движением до полного растворения соли. После растворения колбу с тетраборатом натрия охлаждают до комнатной температуры и доводят до метки дистиллированной водой, сначала небольшими, а затем по каплям, применяя капиллярную пипетку. Закрыв колбу пробкой, тщательно перемешивают.
При расчете титра и нормальной концентрации раствора тетрабората натрия используют формулы
В) Определение титра раствора HCI по тетраборату натрия методом пипетирования.
Берут чистую пипетку на 10 мл, ополаскивают раствором тетрабората натрия (из мерной колбы). Наполняют пипетку раствором до метки и переносят для титрования в другую колбу, добавляют 2-3 капли индикатора метилового оранжевого. Бюретку перед титрованием промывают два раза небольшим количеством HCI и затем наполняют ее, доводя мениск до нулевой черты. Проверив, нет ли в капиллярной трубке («носике») пузырьков воздуха, начинают титровать до появления бледно-красного цвета. Титрование повторяют 3 раза и вычисляют среднюю величину.
1 титрование15,0 мл HCI
2 титрование 14,8 мл HCI VСР=14,76 мл
3 титрование 14,5 мл HCI
После титрования проводят вычисление нормальной концентрации раствора HCI. Нормальность кислоты вычисляют по среднему значению из трех определений. Расчет ведут по формуле
Г) Приготовление титрованного раствора гидроксида натрия
Реактивы гидроксида натрия нередко содержат примеси карбоната натрия, и поэтому для точных работ раствор щелочи должен быть химически чистым.
При определении титра раствора гидроксида натрия по хлороводородной кислоте берут мерную колбу на 100 мл. Неизвестной количестве NaOH приливают дистиллированную воду до метки, закрывают пробкой и перемешивают. Затем пипеткой на 10 мл берут раствор щелочи из мерной колбы и переносят в колбу для титрования, прибавляют 2-3 капли Фенолфталеина и титруют хлороводородной кислотой до обесцвечивания. Титрование повторяют 3 раза и рассчитывают среднюю величину.
1-е титрование- 1,8 мл
2-е титрование- 1,7 мл VСР= 1,7 мл
3-е титрование- 1,6 мл
Статистическая обработка результатов анализа
Источник