Способы сравнения действительных чисел

Арифметические операции над действительными числами

Вы будете перенаправлены на Автор24

Действительные числа

Множество действительных чисел состоит из множества рациональных и иррациональных чисел.

Обозначается множество действительных чисел R. Так же множество действительных чисел можно обозначить промежутком (-?; +?)

Вспомним, что любое рациональное число можно представить в виде конечной десятичной дроби или в виде бесконечной десятичной периодической дроби, а любое иррациональное число можно представить в виде бесконечной десятичной непериодической дроби, значит будет верно следующее утверждение:

Множество конечных и бесконечных десятичных дробей составляют множество действительных чисел.

Геометрическая модель действительных чисел

Геометрической моделью действительных чисел является координатная прямая. Это связано с тем, что каждая точка числовой имеет координату, которая будет являться действительным числом.

Сравнение действительных чисел

Для того чтобы сравнить действительные числа, можно воспользоваться или геометрической моделью действительных чисел или провести сравнение аналитически.Рассмотрим данные способы.

Для того чтоюы сравнить два действительных числа, достаточно найти разность этих чисел и сравнить ее с нулем. Если разность будет положительна, то первое число(уменьшаемое разности) будет больше второго числа(вычитаемого разности); если же разность будет отрицательна, то наоборот

Сравнить числа $\frac<18><5>$ и $4$.

Решение. Для сравнения этих чисел составим и вычислим их разность

для вычисления разности мы приводили данные числа к общему знаменателю, в данном случае общий знаменатель равен $5$. После этого используя правило вычитания дробей с одинаковым знаменателем мы вычли из числителя первой дроби числитель второй дроби, а знаменатель оставили прежним.

Теперь обратим вниманеи, что разность этих чисел получилась отрицательна, значит первое число( уменьшаемое) меньше второго(вычитаемого), т. е.

Готовые работы на аналогичную тему

Для того чтобы сравнить числа с помощью числовой прямой, надо определить местоположение точек, координаты которых будут соответствовать сравниваемым действительным числам. То число, которое больше будет располагаться на координатной прямой правее, то, которое меньше левее

Сравнить числа $\frac<18><5>$ и 4 с помощью координатной прямой

Решение. Для сравнения этих чисел сначала определим местоположение точек, координаты которых будут соответствовать сравниваемым действительным числам, т е числам $\frac<18><5>$ и $4$.

Для этого сначала преобразуем неправильную дробь $\frac<18><5>$ путем выделения целой части, тогда получим

Теперь на координатной прямой отметим точки, координаты которых будут соответственно равны $3\frac<3><5>$ и $4$.

Теперь становится очевидно, что точка с координатой 4 лежит правее чем точка с координатой $3\frac<3><5>$ , значит число 4 больше чем $3\frac<3><5>$ .

Мы видим, что вне зависимости от выбранного способа сравнения результат получен одинаковый.

С действительными числами можно осуществлять все арифметические операции: сложение, вычитание, умножение и деление. На практике часто, для того чтобы не допустить ошибку перед тем, как производить действия надо определить знаки исходных чисел, т.е. определить положительными или отрицательным является каждое из чисел

Сложение действительных чисел

Для того чтобы найти сумму действительных чисел с одинаковыми знаками, надо сложить модули этих чисел и перед полученной суммой поставить из общий знак.

Например, найдем сумму чисел $375$ и $863$. Очевидно, что оба числа положительны, тогда $375+863=/375/+/863/=1238$.Полученная сумма будет иметь знак $«+»$, т к оба числа имели этот общий знак, т.е. были положительны

Теперь найдем сумму чисел $-375$ и $-863$. Оба числа отрицательны, значит сумма будет так же иметь знак $«-»$

Для того чтобы найти сумму чисел с разными знаками, надо из числа большего по модуля вычесть число меньшее по модулю и перед получившейся разностью поставить знак числа большего по модулю.

Читайте также:  Какими способами могут размножаться грибы

Например, найдем сумму чисел $-657$ и $343$. Сначала вычислим модули данных чисел

Теперь согласно правилу произведем дальнейший расчет

При вычисления произведения чисел необходимо придерживаться следующих правил:

при умножении и делении положительных чисел полученное число будет положительным

Например, найдем произведение $\sqrt<13>\cdot \sqrt<7>$

Оба числа положительны, значит и произведение этих чисел будет положительным. Действительно $\sqrt<13>\cdot \sqrt<7>=\sqrt<91>$

при умножении и делении отрицательных чисел полученное число будет положительным

Например, найдем произведение $-\frac<3><4>\cdot \left(-\frac<6><8>\right)=\frac<18><32>=\frac<9><16>$

при умножении и делении отрицательного и положительного чисел полученное число будет отрицательным

Источник

Арифметические операции над действительными числами

Множество действительных чисел является объединением множеств рациональных и иррациональных чисел. Буква R является обозначением рассматриваемого множества. Множество R представляется промежутком вида ( — ∞ ; + ∞ ).

Стоит заметить, что любое рациональное число всегда может принимать вид бесконечной десятичной периодической дроби, любое иррациональное число бесконечной десятичной непериодической дроби, исходя из вышесказанного следует вывод, что множество, включающее в себя конечные и бесконечные периодические и непериодические десятичные дроби принадлежит множеству R .

Геометрическая модель действительных чисел

Координатная прямая непосредственно представляет собой геометрическую модель множества R . Следовательно, каждой точке на координатной прямой всегда можно поставить в соответствие некоторое действительное число.

Сравнение действительных чисел

Сравнение действительных чисел можно производить воспользовавшись либо геометрической моделью, либо их можно сравнивать аналитически. Рассмотрим оба способа сравнения. На координатной прямой расположено в произвольном порядке два числа. Определить, какое из них больше достаточно просто. Большее число всегда находится правее другого.

Аналитически определись какое число является большим или меньшим какого либо числа тоже возможно, для этого достаточно найти разность этих чисел и затем сравнить ее с нулем. Если полученная разность будет иметь положительный знак, то первое число (уменьшаемое разности) будет больше чем второе число (вычитаемое разности); если же разность будет иметь отрицательный знак, то первое число (уменьшаемое разности) будет меньше, чем второе число (вычитаемое разности).

Ниже рассмотрим примеры, демонстрирующие оба способа сравнения:

Сравнить числа f r a c 185 и 4 .

Для сравнения данных чисел найдем разность этих чисел.

f r a c 185 — 4 = f r a c 185 — f r a c 205 = — f r a c 25 чтобы вычислить данную разность, надо привести данные числа к общему знаменателю, воспользовавшись правилом приведения к общему знаменателю. Проделав данную операцию, видим, что знаменатель в данном примере равен 5. После этого опираясь на правило вычитания дробей с одинаковым знаменателем, вычтем из числителя первой дроби числитель второй дроби, а знаменатель оставим прежним. Обратим внимание, что разность приведенных чисел является отрицательной, значит первое число (уменьшаемое) меньше второго (вычитаемого), т. е. f r a c 185 4 .

Сравнить числа f r a c 185 и 4 с помощью координатной прямой.

Чтобы сравнить данные числа, следует определить геометрическое место точек этих чисел на координатной прямой. Т.е. сравниваемые действительные числа будут соответствовать определенным координатам на координатной прямой, а именно числам f r a c 185 и 4 . Для начала преобразуем неправильную дробь frac185 в смешанное число т.е. выделим целую часть, следовательно, получим 3 f r a c 35 .

Далее на координатной прямой отметим точки, координаты которых будут равны 3 f r a c 35 и 4 . f r a c 185 содержит в себе 3 целых, значит данное число расположено левее 4. Как уже известно, меньшее число лежит левее, исходя из этого напрашивается вывод, что f r a c 185 4 .

Можно сделать вывод, что вне зависимости от внешнего вида сравнения действительных чисел можно реализовать все арифметические операции, а именно сложение, вычитание, умножение и деление. Однако перед выполнением действий с действительными числами следует учитывать исходные знаки данных чисел т.е. определить является каждое число положительными или отрицательными.

Сложение действительных чисел

Чтобы сложить два действительных числа с одинаковыми знаками следует сначала сложить их модули и затем перед суммой поставить их общий знак. Например:

( + 8 ) + ( + 2 ) = + 10 ; ( — 5 ) + ( — 4 ) = — 9 .

Чтобы сложить два действительных числа с разными знаками следует для начала обратить внимание на знак числа, если знак одного из чисел отрицательный, тогда это число следует вычитать из другого, если положительный – сложить с другим. Далее нужно сложить либо вычесть данные числа и поставить знак большего модуля. Например

Читайте также:  Способы предотвращения микробиологической порчи продуктов

( + 2 ) + ( — 7 ) = — 5 ; ( + 10 ) + ( — 4 ) = + 6 .

Вычитание действительных чисел

Вычитание действительных чисел можно представить в виде сложения: a — b = a + ( — b ) , то есть, чтобы вычесть из числа а число b, достаточно к уменьшаемому прибавить число, противоположное вычитаемому.

Например: ( + 5 ) — ( — 7 ) = ( + 3 ) + ( + 7 ) = 12 ; ( + 6 ) — ( + 4 ) = ( + 6 ) + ( — 4 ) = + 2 .

Умножение действительных чисел

Чтобы умножить (разделить) два действительных числа необходимо умножить (разделить) их модули. И затем перед результатом поставить знак по приведенному в таблице правилу знаков ниже.

При умножении и делении действительных чисел желательно помнить пословицу: «Друг моего друга — мой друг, враг моего врага — мой друг, друг моего врага — мой враг, враг моего друга — мой враг».

( + 2 ) ( + 7 ) = + 14 ; ( — 2 ) ( + 6 ) = — 12 ; ( — 2 ) ( — 8 ) = 16 ;

Свойства арифметических действий над действительными числами (основные законы алгебры)

В алгебре существуют так называемые основные законы алгебры. Они практически всегда принимаются за истину (случаи ложности данных законов не рассматриваем) и сформулированы в виде следующих свойств-тождеств:

  1. a + b = b + a ;
  2. ( a + b ) + c = a + ( b + c ) ;
  3. a + 0 = a ;
  4. a + ( — a ) = 0 ;
  5. a b = b a ;
  6. ( a b ) c = a ( b c ) ;
  7. a ( b + c ) = a b + a c ;
  8. a · 1 = a ;
  9. a · 0 = 0 ;
  10. a · 1 a = 1 , ( a ≠ 0 ) .

Свойства 1 и 5 выражают переместительный закон (коммутативность) сложения и умножения соответственно;

Cвойства 2 и 6 выражают сочетательный закон (ассоциативность);

Cвойство 7 — распределительный закон (дистрибутивность) умножения относительно сложения;

Cвойства 3 и 8 указывают на наличие нейтрального элемента для сложения и умножения соответственно;

Cвойства 4 и 10 – на наличие нейтрализующего элемента соответственно.

Источник

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №15. Действительные числа.

Перечень вопросов, рассматриваемых в теме

1) множество иррациональных чисел;

2) множество рациональных чисел;

3) правила выполнения действий с бесконечными десятичными дробями;

4)определение бесконечно убывающей геометрической прогрессии.

Глоссарий по теме

Рациональные числа – это такие числа, которые можно записать в виде обыкновенной дроби , где m — целое число, n — натуральное число , обозначаются буквой Q.

Иррациональные числа— это действительные числа, которые нельзя представить в виде обыкновенной дроби. Иррациональное число может быть представлено в виде бесконечной непериодической дроби, т.е. числа после запятой в записи данного числа не повторяются.

Дробные числа – это числа, которые можно записать в виде обыкновенной дроби.

Все основные действия над рациональными числами сохраняются и для действительных чисел (переместительный, сочетательный и распределительный законы, правила сравнения, правила раскрытия скобок и т.д.).

Арифметические операции над действительными числами обычно заменяются операциями над их приближениями.

Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Все числа, которые мы изучаем в школе, называются действительными числами. Они образуют множество действительных чисел, которые принято обозначать латинской буквой R.

В свою очередь все действительные числа можно разделить на 2 группы: рациональные числа и иррациональные числа.

Рациональные числа – это такие числа, которые можно записать в виде обыкновенной дроби , где m —целое число, n — натуральное число , обозначаются буквой Q.

Пример: -3; -0,5; .

Иррациональные числа— это действительные числа, которые нельзя представить в виде обыкновенной дроби. Иррациональное число может быть представлено в виде бесконечной непериодической дроби, т.е. числа после запятой в записи данного числа не повторяются.

Пример: π=3,141592…; 0, 113456. .

Рациональные числа, в свою очередь, можно разделить на 2 вида – это целые числа и дробные числа.

Читайте также:  Маска gigi solar energy способ применения

Дробные числа – это числа, которые можно записать в виде обыкновенной дроби.

Целые же числа можно разделить еще на несколько групп: отрицательные целые числа, нуль и положительные (натуральные) целые числа.

На числовой оси (Ох) между целыми числами будут находиться дробные иррациональные числа. Все вместе они будут представлять собой множество действительных чисел, R.

Обратите внимание, что все основные действия над рациональными числами сохраняются и для действительных чисел (переместительный, сочетательный и распределительный законы, правила сравнения, правила раскрытия скобок и т.д.).

Арифметические операции над действительными числами обычно заменяются операциями над их приближениями.

Числа 4; 4,2; 4,28 и т.д. являются последовательными приближениями значений суммы

.

Пусть это последовательные приближения действительного числа у с точностью до 1, до 0,1, до 0,01 и т.д. Тогда погрешность приближения как угодно близко приближается к нулю.

при или

Читается «модуль разности у и стремится к нулю при n, стремящемся к бесконечности» или «предел модуля разности у и при n, стремящемся к бесконечности, равен нулю»

Т.е. если при или

Модуль действительного числа у обозначается как |у| и определяется так же, как и модуль рационально числа:

.

А теперь давайте вспомним, что такое геометрическая прогрессия.

Рассмотрим квадрат со стороной, равной 1. Нарисуем ещё один квадрат, сторона которого равна половине первого квадрата, затем ещё один, сторона которого – половина второго, потом следующий и т.д. Каждый раз сторона нового квадрата равна половине предыдущего (Рисунок 1).

В результате, мы получили последовательность сторон квадратов образующих геометрическую прогрессию со знаменателем .

И, что очень важно, чем больше мы будем строить таких квадратов, тем меньше будет сторона квадрата. Например,

n=15, ;

n=20, ;

n=21, .

Т.е. с возрастанием номера n члены прогрессии приближаются к нулю.

Рассмотрим ещё один пример. Равносторонний треугольник со стороной равной 1см. Построим следующий треугольник с вершинами в серединах сторон 1-го треугольника, по теореме о средней линии треугольника – сторона 2-го равна половине стороны первого, сторона 3-го – половине стороны 2-го и т.д. Опять получаем последовательность длин сторон треугольников. (рисунок 2)

Если рассмотреть геометрическую прогрессию с отрицательным знаменателем.

То, опять, с возрастанием номера n члены прогрессии приближаются к нулю.

Обратим внимание на знаменатели этих последовательностей. Везде знаменатели были меньше 1 по модулю.

Можно сделать вывод: геометрическая прогрессия будет бесконечно убывающей, если модуль её знаменателя меньше 1.

Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

Используя данное определение можно решить вопрос о том, является ли геометрическая прогрессия бесконечно убывающей или нет.

Рассмотрим квадрат со стороной, равной 1. Разделим его пополам, одну из половинок ещё пополам и т.д. площади всех полученных прямоугольников при этом образуют бесконечно убывающую геометрическую прогрессию: (Рисунок 3)

Сумма площадей всех полученных таким образом прямоугольников будет равна площади 1-го квадрата и равна 1.

Но в левой части этого равенства – сумма бесконечного числа слагаемых.

Рассмотрим сумму n первых слагаемых.

По формуле суммы n первых членов геометрической прогрессии, она равна

Если n неограниченно возрастает, то

или . Поэтому , т.е. .

Сумма бесконечно убывающей геометрической прогрессии есть предел последовательности

Например, для прогрессии , где ,

имеем

Так как то

Сумму бесконечно убывающей геометрической прогрессии можно находить по формуле

Примеры и разборы решений заданий тренировочного модуля

Пример 1:

Найдем значение данного выражения с точностью до единиц.

Округлим полученные результаты до десятых:

Найдем значение данного выражения с точностью до десятых.

Округлим полученные результаты до сотых:

3

Найдем значение данного выражения с точностью до сотых.

Округлим полученные результаты до тысячных:

32

и т.д.

Давайте выясним, является ли последовательность бесконечно убывающей геометрической прогрессией, если она задана формулой:

а) ; б)

. Найдем q.

;;

Следовательно, данная геометрическая прогрессия является бесконечно убывающей.

Следовательно, данная последовательность не является бесконечно убывающей геометрической прогрессией.

Источник

Оцените статью
Разные способы