Способы создания трехмерных изображений

Краткий обзор технологий формирования 3D-изображения

Сегодня уже никого нельзя удивить 3D-очками. Да и мониторы, обеспечивающие объемное изображение, тоже перестали быть редкостью. Люди воспринимают эти устройства как должное, о них мечтают и недолюбливают, их оценивают и тестируют, ищут преимущества и недостатки, но мало кто знает, за счет чего обычная картинка становится трехмерной. Что ж, попытаемся исправить это упущение.

Человеческий глаз и 3D
Для начала давайте разберемся, как же вообще наш мозг может «обмануться» и воспринять обычную плоскую картинку в качестве трехмерной. Сразу хочу сказать, что подобных способов несколько. Например, 3D-изображение можно создать игрой света и тени или особым расположением элементов картинки. Но в компьютерных устройствах обычно используется несколько иной принцип. Дело в том, что у человека два глаза, каждый из которых смотрит на мир под своим углом. Информация, получаемая обоими глазами, обрабатывается мозгом и «сливается» в одну картинку. Именно этот факт и используют разработчики в своих целях. Оказывается, достаточно просто показать каждому глазу свое, специальным образом рассчитанное, изображение. Мозг анализирует полученную информацию и «обманывается», создавая у человека впечатление трехмерности увиденного.

Две картинки
Первый и самый очевидный способ, который приходит в голову для реализации «двуглазого» принципа — это простое разделение картинок. Достаточно предоставить каждому глазу свой собственный монитор, на котором и показывать нужное изображение. Этот способ был назван методом пространственного разделение. На нем основывается множество устройств различных компаний. Наибольшее распространение получили всем известные шлемы виртуальной реальности, которые по-научному называются HMD — Helmet Mounted Display. Главный плюс HMD — полное погружение в виртуальную реальность, которое используется во многих областях, начиная с компьютерных игр и заканчивая шлемами для пилотов боевых истребителей.

Всевозможные стереоскопические шлемы (Helmet Mounted Display) — излюбленная схема конструкторов и фантастов.

Но не только шлемы виртуальной реальности основаны на принципе пространственного разделения. Во многих специальных областях и научных исследованиях применяются BOOM-дисплеи (Binocular Omni-Orientation Monitor). В принципе, эти устройства внешне очень похожи на обычные бинокли. Только зачастую их устанавливают на специальных «журавлях», увешанных датчиками, которые следят за положением устройства в пространстве.

Цвет цвету рознь
Кстати, а вы знаете, что первые трехмерные картинки были созданы аж в 1858 году? Именно тогда француз Джозеф д’Альмедиа изобрел первый метод создания 3D-изображений — цветовое мультиплексирование. В основе этого принципа лежит использование двуцветных картинок. Причем на каждой картинке совмещены два изображения: одно для левого глаза, другое для правого. Отличаются они друг от друга цветом, одно из них синее, другое красное. Для того, чтобы человек увидел трехмерную картинку, он должен надеть специальные очки. Вместо линз в них установлены соответствующие светофильтры. В результате глаз, смотрящий через синее стекло, видит синюю картинку, но не замечает красную. Точно так же второй глаз видит красную картинку, но не замечает синюю.

К сожалению, подобная технология практически не нашла применения в компьютерных устройствах. Дело в том, что глаза каждого человека по-своему воспринимают цвета, в результате чего некоторые люди вообще не видят стереоэффекта, а другим приходится долго всматриваться в изображение. Естественно, не стоит забывать и о том, что современного пользователя нельзя привлечь двуцветными картинками, им подавай как минимум 16-битный цвет. Так что технология цветного мультиплексирования была признана несовершенной.

Открыто, закрыто…
Не так давно был разработан еще один принцип трехмерного восприятия изображений, который применяется в большинстве современных устройств. Называется этот способ временное мультиплексирование. В нем тоже применяются специальные очки, только в них используются не линзы, а оптические затворы. Но не путайте эти затворы с теми, что стоят внутри фотоаппаратов. Предназначение у них одно, но принципы действия совершенно различны. Если в фотоаппаратах используются механические шторки, то в 3D-устройствах применяются жидкие кристаллы, которые при поляризации становятся непрозрачными. На компьютер устанавливается специальная программа, которая по очереди показывает изображение для правого и левого глаз. В то время, когда показывается «правая» картинка, затвор на левом глазу закрывается, а когда «левая» — закрыт правый глаз. Изображения чередуются с большой частотой, и у человека создается впечатление, что он смотрит обоими глазами одновременно.

Читайте также:  Определите способ нарушения общественного отношения

К плюсам временного мультиплексирования можно отнести высокое качество полученного объемного изображения. При использовании этого способа не возникает абсолютно никаких геометрических или цветовых искажений. Правда, недостатки у подобных систем тоже есть, и достаточно существенные. Так, например, частота кадров картинки снижается вдвое, так как за одно и то же время нужно успеть вывести в два раза больше картинок. Естественно, можно попытаться увеличить частоту регенерации монитора, но на ЭЛТ это не получается из-за эффекта послесвечения люминофора. С ЖК-панелями дело обстоит получше, но они все еще остаются не доступными подавляющему большинству пользователей. Да и сами устройства, использующие принцип временного мультиплексирования, достаточно дороги.

Конечно, были попытки удешевить технологию временного мультиплексирования, чтобы сделать ее доступной для рядовых пользователей. Так, например, специалисты из компании Tentronix предложили специальную панель, которая навешивается на монитор, и выполняет функцию затвора. Принцип действия точно такой же, как и в обычных устройствах — жидкие кристаллы. Правда, пользователям все равно нужны очки, только их устройство уже гораздо проще. Конечно, эта разработка не получилась дешевле других, но зато она гораздо удобней в использовании. Например, очки теперь стали не такими тяжелыми и громоздкими, а еще панель более долговечна, очки же дешевы, и заменить их не сложно.

Обойдемся без очков
Все вышеописанные технологии требовали от пользования надевания на голову различных устройств. К счастью, в последнее время это стало совсем необязательно: появились стереоскопические дисплеи, при использовании которых не нужны ни очки, ни шлемы. Все эти устройства основаны на одном принципе — мультиплексирование по направлению. В этом принципе использован тот факт, что глаза человека смотрят на объект под разным углом. Поэтому, если взять два изображения на одном экране, и сделать так, чтобы каждое из них было видимо только под определенным углом, можно добиться трехмерной картинки. Кстати, если на экране совместить не два, а, несколько изображений, то у пользователя появится возможность наблюдать за объектом с разных сторон.

3D из нашего детства
Помните, когда мы были детьми, продавались стереоскопические календарики? Для тех, кто этого уже не застал, объясню. Календарики эти представляли собой рельефные карточки с нанесенным специальным образом изображением. Если смотреть на картинку под одни углом, видишь одно, а под другим — другое. Это достигалось за счет особого рельефа поверхности, который представлял собой чередование призм и линз. Подобный принцип используется и в наиболее распространенных автостереоскопических дисплеев.

Источник

Трехмерное моделирование в современном мире

Сегодня я расскажу вам о том, что такое 3D-моделирование, каким оно бывает, где его применяют и с чем его едят. Эта статья в первую очередь ориентирована на тех, кто только краем уха слышал, что такое 3D-моделирование, или только пробует свои силы в этом. Поэтому буду объяснять максимум «на пальцах».

Читайте также:  Способы применения строительного фена

Сам я технический специалист и уже более 10 лет работаю с 3D-моделями, поработал более чем в 10ке различных программ разных классов и назначений, а также в различных отраслях. В связи с этим накопился определенный helicopter view на эту отрасль, с чем и хотел с вами поделиться.

3D-моделирование прочно вошло в нашу жизнь, частично или полностью перестроив некоторые виды бизнеса. В каждой отрасли, в которую 3D-моделирование принесло свои изменения, имеются как свои определенные стандарты, так и негласные правила. Но даже внутри одной отрасли, количество программных пакетов бывает такое множество, что новичку бывает очень трудно разобраться и сориентироваться с чего начинать. Поэтому, для начала давайте разберем какие же бывают виды 3D-моделирования и где они применяются.

Можно выделить 3 крупные отрасли, которые сегодня невозможно представить без применения трехмерных моделей. Это:

  • Индустрия развлечений
  • Медицина (хирургия)
  • Промышленность

С первой мы сталкиваемся почти каждый день. Это фильмы, анимация и 90% компьютерных игр. Все виртуальные миры и персонажи созданы с помощью одного и того же принципа — полигонального моделирования.

Полигонами называются вот эти треугольники и четырехугольники.

Чем больше полигонов на площадь модели, тем точнее модель. Однако, это не значит, что если модель содержит мало полигонов (low poly), то это плохая модель, и у человека руки не оттуда. Тоже самое, нельзя сказать про то, что если в модели Over999999 полигонов (High poly), то это круто. Все зависит от предназначения. Если, к примеру, речь идет о массовых мультиплеерах, то представьте каково будет вашему компьютеру, когда нужно будет обработать 200 персонажей вокруг, если все они high poly?

Полигональное моделирование происходит путем манипуляций с полигонами в пространстве. Вытягивание, вращение, перемещение и.т.д.

Пионером в этой отрасли является компания Autodesk (известная многим по своему продукту AutoCAD, но о нем позже).
Продукты Autodesk 3Ds Max, и Autodesk Maya, де-факто стали стандартом отрасли. И свое знакомство с 3D моделями, будучи 15-летним подростком, я начал именно с 3Ds Max.

Что же мы получаем на выходе сделав такую модель? Мы получаем визуальный ОБРАЗ. Геймеры иногда говорят: «я проваливался под текстуры» в игре. На самом деле вы проваливаетесь сквозь полигоны, на которые наложены эти текстуры. И падение в бесконечность происходит как раз потому, что за образом ничего нет. В основном, полученные образы используются для РЕНДЕРА (финальная визуализация изображения), в игре / в фильме / для картинки на рабочем столе.

Собственно, я в свое время и пытался что-то «слепить», чтобы сделать крутой рендер (тогда это было значительно сложнее).
Кстати о лепке. Есть такое направление как 3D-sсulpting. По сути, тоже самое полигональное моделирование, но направленное на создание в основном сложных биологических организмов. В ней используются другие инструменты манипуляций с полигонами. Сам процесс больше напоминает чеканку, чем 3D моделинг.

Если полигональная модель выполнена в виде замкнутого объема, как например, те же скульптуры, то благодаря современной технологии 3D-печати (которая прожует почти любую форму) они могут быть воплощены в жизнь.

По сути, это единственный путь для полигональных 3D моделей оказаться в реальном мире. Из вышеописанного можно сделать вывод, что полигональное моделирование нужно исключительно для творческих людей (художников, дизайнеров, скульпторов). Но это не однозначно. Так, например, еще одной крупной сферой применения 3D моделей является медицина, а именно- хирургия. Можно вырастить протез кости взамен раздробленной. Например, нижняя челюсть для черепашки.

У меня нет медицинского образования и я никогда ничего не моделил для медицины, но учитывая характер форм модели, уверен, что там применяется именно полигональное моделирование. Медицина сейчас шагнула очень далеко, и как показывает следующее видео, починить себе можно практически все (были бы деньги).

Читайте также:  Гибкая черепица технониколь способ укладки

Конечно, используя полигональное моделирование, можно построить все эти восстанавливающие и усиливающие элементы, но невозможно контролировать необходимые зазоры, сечения, учесть физические свойства материала и технологию изготовления (особенно плечевого сустава). Для таких изделий применяются методы промышленного проектирования.

По правильному они называются: САПР (Система Автоматизированного ПРоектирования) или по-английский CAD (Computer-Aided Design). Это принципиально другой тип моделирования. Именно на нем я специализируюсь уже 8 лет. И именно про него я буду вам в дальнейшем рассказывать. Чем этот метод отличается от полигонального? Тем, что тут нет никаких полигонов. Все формы являются цельными и строятся по принципу профиль + направление.

Базовым типом является твердотельное моделирование. Из названия можно понять, что, если мы разрежем тело, внутри оно не будет пустым. Твердотельное моделирование есть в любой CAD-системе. Оно отлично подходит для проектирования рам, шестеренок, двигателей, зданий, самолётов, автомобилей, да и всего, что получается путем промышленного производства. Но в нем (в отличии от полигонального моделирования) нельзя сделать модель пакета с продуктами из супермаркета, копию соседской собаки или скомканные вещи на стуле.

Цель этого метода — получить не только визуальный образ, но также измеримую и рабочую информацию о будущем изделии.

CAD – это точный инструмент и при работе с CAD, нужно предварительно в голове представлять топологию модели. Это алгоритм действий, который образует форму модели. Вот, как раз по топологии, можно отличить опытного специалиста от криворукого. Не всегда задуманную топологию и сложность формы можно реализовать в твердотелке, и тогда нам на помощь приходит неотъемлемая часть промышленного проектирования — поверхностное моделирование.

Топология в поверхностях в 10 раз важнее, чем при твердотельном моделирование. Неверная топология – крах модели. (напоминаю, что это статья обзорная и для новичков, я не расписываю тут нюансы). Освоение топологии поверхностей на высоком уровне, закрывает 70% вопросов в промышленном моделировании. Но для этого нужно много и постоянно практиковаться. В конечном итоге, поверхности все равно замыкаются в твердотельную модель.

Со временем приходит понимание наиболее удобного метода при моделировании того или иного изделия. Тут полно лайф-хаков, причем у каждого специалиста есть свои.

ВАЖНО: использование CAD без профильного образования не продуктивно! Я сам много раз наблюдал, как творческие люди, или мастера на все руки пытались проектировать. Да, конечно они что-то моделировали, но все это было «сферическим конем в вакууме».
При моделировании в CAD, помимо топологии, необходимо иметь конструкторские навыки. Знать свойства материалов, и технологию производства. Без этого, все равно, что подушкой гвозди забивать, или гладить пылесосом.

В CAD мы получаем электронно-геометрическую модель изделия.

(Напоминаю, что при полигональном моделировании мы получаем визуальный образ)

  • Сделать чертежи
  • По ней можно написать программу для станков с ЧПУ,
  • Ее можно параметризировать (это когда изменяя 1 параметр можно изменить модель без переделки)
  • Можно проводить прочностные и другие расчеты.
  • Ее так же можно послать на 3д печать (и качество будет лучше)
  • Сделать рендер.

Думаю, пока этого вам хватит. Мы разобрали:

  • 2 основных вида моделирования.
  • Разобрали отрасли применения.
  • Разобрали возможности каждого метода и его назначение.
  • Разобрали базовые типы моделирования в CAD и некоторые нюансы.

Надеюсь, вам было интересно!

Источник

Оцените статью
Разные способы