Способы создания предварительного напряжения способы напряжения арматуры

Способы создания предварительного напряжения

Тема 3.ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ

ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ КОНСТРУКЦИЙ

Сущность предварительного напряжения

Метод расчета по предельным состояниям является общим и применяется как для обычных, так и для предварительно напряженных железобетонных конструкций. Однако последние обладают рядом особенностей, которые необходимо учитывать в расчетах.

Ранее указывалось, что низкая прочность бетона на растяжение и малая растяжимость являются его существенным недостатком, снижающим строительные качества железобетона. Поскольку предельная растяжимость бетона равна в среднем εbtu= 15·10 -5 , трещины в бетоне могут возникнуть уже при напряжениях в арматуре σs = εsEs=l5·10 -5 ·2·10 5 =30 МПа. С увеличением нагрузки трещины будут увеличиваться. В элементах, армированных сталями классов А-II, A-III, при эксплуата­ционных нагрузках σs = 270. 340 МПа ширина раскры­тия трещин не превышает допустимой (acrc,u ≤ 0,3. 0,4 мм). При применении же высокопрочной арматуры (σs,ser ≥ 500 МПа) ширина раскрытия трещин будет существенно превышать допустимую.

Применение растянутой высокопрочной арматуры оказывается возможным лишь в предварительно напряженных конструкциях, в которых трещины образуются при значительно более высоких нагрузках, а ширина их раскрытия, как правило, не превышает допустимых пределов. При этом полностью используются прочностные свойства этой арматуры.

Впервые высокопрочная арматура была успешно применена в предварительно напряженных железобетонных конструкциях во Франции инж. Фрейссинэ в 1928 г., а в СССР — проф. В.В. Михайловым в 1932 г.

В последние годы применение предварительного напряжения стало одним из основных направлений совершенствования железобетонных конструкций. Оно позволяет:

· существенно уменьшить расход стали за счет использования арматуры высокой прочности;

· повысить трещиностойкость конструкций; увеличить жесткость, уменьшить прогибы;

· повысить выносливость конструкций, работающих под воздействием многократно повторяющихся нагрузок (от кранов, автотранспорта и т.п.);

· увеличить срок службы конструкций при эксплуатации в агрессивных средах;

· уменьшить расход бетона и снизить массу конструкций;

· расширить область применения железобетона, заменив им дефицитные сталь и дерево в таких конструкциях, как напорные трубопроводы, резервуары, шпалы и т. п.

Способы создания предварительного напряжения

Существуют две принципиальные схемы создания предварительного напряжения в железобетонных конструкциях: путем предварительного натяжения арматуры на упоры формы или стенда и натяжения ее на затвердевший бетон (забетонированную конструкцию).

· Натяжение на упоры применяют в конструкциях малых и средних пролетов, изготовляемых в заводских условиях. Арматуру укладывают в форму до бетонирования и после натяжения до заданного значения напряжения закрепляют на упорах (рис. 3.1, а). Затем элемент бетонируют. Когда бетон достигает необходимой передаточной прочности Rbp, арматуру освобождают с упоров. Стремясь восстановить свою первоначальную длину, арматура обжимает бетон, поскольку имеет с ним надежное сцепление (рис. 3.1, б).

Натяжение на бетон применяют главным образом для большепролетных конструкций (ферм, мостов и т. п.). В этом случае изготовляют бетонный или малоармированный элемент, в котором устраивают каналы или пазы для размещения напрягаемой арматуры (рис. 3.1, в). Каналы имеют размеры на 5. 15 мм больше диаметра арматуры и создаются путем укладки гофрированных стальных тонкостенных трубок, оставляемых в теле конструкции, или с помощью каналообразователей, извлекаемых из свежеуложенного бетона. Затем арматуру натягивают до заданного напряжения (рис. 3.1, г) и закрепляют на торцах конструкции. В процессе натяжения арматуры происходит обжатие бетона. После этого канал заполняют цементным или цементно-песчаным раствором под давлением (инъецируют). Арматура может располагаться и с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров). В этом случае после натяжения арматуры поверх ее наносят слой бетона под давлением (торкрет-бетона).

Читайте также:  Смесь для меренги способ приготовления

Рис. 3.1. Схемы создания предварительного напряжения:

1 — форма; 2 — арматура; 3 — упор; 4 — домкрат; 5 — анкер; 6 — канал

Натяжение арматуры на упоры производится механическим, электротермическим и электротермомеханическим способами, а на бетон, как правило, механическим способом.

· Для натяжения механическим способом применяют гидравлические и винтовые домкраты, намоточные машины и др.

· Сущность электротермического способа натяжения арматуры заключается в том, что стержневую или проволочную арматуру, снабженную по концам ограничителями, установленными на определенном расстоянии друг от друга, разогревают током до 300. 350°С, в результате чего она удлиняется. Нагретые стержни укладывают в форму таким образом, чтобы ограничители оказались заведенными за упоры формы. Упоры препятствуют укорочению стержней при остывании, благодаря чему в стержнях возникают заданные растягивающие напряжения. После укладки и твердения бетона арматуру отпускают с упоров и вследствие ее укорочения происходит обжатие бетона конструкции.

· Электротермомеханический способ натяжения представляет сочетание электротермического и механического способов.

· В последние годы для создания предварительного натяжения в конструкциях начинают успешно применять бетоны на специальных напрягающих цементах (НЦ). Бетон на таком цементе при твердении увеличивается в объеме и вследствие сцепления с арматурой растягивает ее. Так как арматура препятствует свободному расширению бетона, в нем возникают сжимающие напряжения. Такие конструкции называют самонапряженными. Применение напрягающего цемента позволяет отказаться от приспособлений для натяжения арматуры.

Напрягаемую арматуру можно располагать в элементе в двух и даже в трех направлениях, тогда создается соответственно двухосное или трехосное предварительное напряжение.

При назначении передаточной прочности Rbp должны быть приняты во внимание два обстоятельства: с одной стороны, желательна более ранняя передача усилия с арматуры на бетон в целях повышения производительности заводов ЖБИ и улучшения использования производственных площадей; с другой стороны, высокий уровень обжатия при низкой передаточной прочности приведет к значительным деформациям ползучести и потерям предварительного напряжения в арматуре. Учитывая эти обстоятельства, нормы рекомендуют назначать передаточную прочность не ниже 11 МПа, а при арматуре классов А-VI, К-7, К-19, В-II, Вр-II — не менее 15,5 МПа. Кроме того, величина Rbp должна быть не менее 50 % от принятого класса бетона.

Источник

Способы создания предварительного напряжения

Существуют две принципиальные схемы создания предварительного напряжения в железобетонных конструкциях; путем предварительного натяжения арматуры на упоры формы или стенда и натяжения ее на затвердевший бетон (забетонированную конструкцию).

Натяжение на упоры применяют в конструкциях малых и средних пролетов, изготовляемых в заводских условиях. Арматуру укладывают в форму до бетонирования и после натяжения до заданного значения напряжения закрепляют на упорах.. Затем элемент бетонируют. Когда бетон достигает необходимой передаточной прочности, арматуру освобождают с упоров. Стремясь восстановить свою первоначальную длину, арматура обжимает бетон, поскольку имеет с ним надежное сцепление.

Натяжение на бетон применяют главным образом для бо-чьшепролетных конструкций (ферм, мостов и т. п.). В этом случае изготовляют бетонный или малоармированный элемент, в котором устраивают каналы или пазы для размещения напрягаемой арматуры. Каналы имеют размеры на 5-15 мм больше диаметра арматуры и создаются путем укладки гофрированных стальных тонкостенных трубок, оставляемых в теле конструкции» иди с помощью каналообразователсй, извлекаемых из свежеуложснного бетона. Затем арматуру натягивают до заданного напряжения и закрепляют на торцах конструкции. В процессе натяжения арматуры происходит обжатие бетона. После этого канал заполняют цементным или цементно-песчаным раствором под давлением (инъецируют). Арматура может располагаться и с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров). В этом случае после натяжения арматуры поверх ее наносят слой бетона под давлением (торкретбетона).

Читайте также:  Классификация огня по способам стрельбы

Натяжение арматуры на упоры производится механическим, электротермическим и электротермомеханическим способами, а на бетон, как правило, механическим способом.

Для натяжения механическим способом применяют гидравлические и винтовые домкраты, намоточные машины и др.

Сущность электротермического способа натяжения арматуры заключается в том, что стержневую или проволочную арматуру, снабженную по концам ограничителями. установленными на определенном расстоянии друг от друга, разогревают током до 300-350 °С, в результате чего она удлиняется. Нагретые стержни укладывают в форму таким образом, чтобы ограничители оказались заведенными за упоры формы. Упоры препятствуют укорочению стержней при остывании, благодаря чему в стержнях возникают заданные растягивающие напряжения. После укладки и твердения бетона арматуру отпускают с упоров и вследствие ее укорочения происходит обжатие бетона конструкции.

Электротермомеханический способ натяжения представляет сочетание электротермического и механического способов.

В последние годы для создания предварительного натяжения в конструкциях начинают успешно применять бетоны на специальных напрягающих цементах (НЦ). Бетон на таком цементе при твердении увеличивается в объеме и вследствие сцепления с арматурой растягивает ее. Так как арматура препятствует свободному расширению бетона, в нем возникают сжимающие напряжения. Такие конструкции называют самонапряженпыми. Применение напрягающего цемента позволяет отказаться от приспособлений для натяжения арматуры.

Напрягаемую арматуру можно располагать в элементе в двух и даже в трех направлениях, тогда создается соответственно двухосное или трехосное предварительное напряжение.

Источник

Понятие о предварительно напряженных железобетонных конструкциях

Основными достоинствами железобетона являются: высокая проч­ность, огнестойкость, долговечность, простота формообразования. Бетонная балка (рис. ниже), испытывающая при изгибе растяжение ниже нейтральной оси и сжатие выше нее, имеет низкую несущую способность вследствие слабого сопротивления бетона растяжению. При этом прочность бетона в сжатой зоне используется не полностью. В связи с этим неармированный бетон не рекомендуется применять в конструкциях, предназначенных для работы на изгиб или растяжение, так как размеры таких элементов были бы непомерно большими.

Бетонные конструкции применяют преимущественно при их работе на сжатие (стены, фундаменты, подпорные сооружения, ус­той и др.) и только иногда при работе на изгиб при малых растяги­вающих напряжениях, не превышающих предела прочности бето­на при растяжении.

Железобетонные конструкции, усиленные в растянутой зоне арматурой, обладают значительно более высокой несущей способ­ностью. Так, несущая способность железобетонной балки (рис. ниже) с уложенной внизу арматурой в 10-20 раз больше, чем несущая способность бетонной балки таких же размеров. При этом прочность бетона в сжатой зоне балки используется полностью.

Схемы работы элементов под нагрузкой

В качестве арматуры применяют стальные стержни, проволо­ки, прокатные профили, а также стекловолокно, синтетические ма­териалы, деревянные бруски, бамбуковые стволы.

Конструкции армируют не только при их работе на растяжение и изгиб, но и на сжатие (рис. выше). Поскольку сталь имеет высокое сопротивление растяжению и сжатию, включение ее в сжатые эле­менты значительно повышает их несущую способность. Совмест­ная работа таких различных по свойствам материалов, как бетон и сталь, обеспечивается следующими факторами:

  1. сцеплением арматуры с бетоном, возникающим при твердении бетонной смеси; благодаря сцеплению оба материала деформи­руются совместно;
  2. близкими по значению коэффициентами линейных температур­ных деформаций (для бетона 7·10 -6 -10·10 -6 1/град, для стали 12·10 -6 1/град), что исключает появление начальных напряже­ний в материалах и проскальзывание арматуры в бетоне при изменениях температуры до 100 °С;
  3. надежной защитой стали, заключенной в плотный бетон, от кор­розии, непосредственного действия огня и механических по­вреждений.

Особенностью железобетонных конструкций является возмож­ность образования трещин в растянутой зоне при действии внешних нагрузок. Раскрытие этих трещин во многих конструкциях в стадии эксплуатации невелико (0,1-0,4 мм) и не вызывает коррозии арма­туры или нарушения нормальной работы конструкции. Однако име­ются конструкции и сооружения, в которых по эксплуатационным условиям образование трещин недопустимо (например, напорные трубопроводы, лотки, резервуары и т. п.) или ширина раскрытия должна быть уменьшена. В этом случае те зоны элемента, в кото­рых под действием эксплуатационных нагрузок появляются растя­гивающие усилия, заранее (до приложения внешних нагрузок) под­вергают интенсивному обжатию путем предварительного натяже­ния арматуры. Такие конструкции называют предварительно напряженными. Предварительное обжатие конструкций выполня­ют в основном двумя способами: натяжением арматуры на упоры (до бетонирования) и на бетон (после бетонирования).

Читайте также:  Азиатский рабовладельческого способа производства

В первом случае перед бетонированием конструкции арматуру натягивают и закрепляют на упорах или торцах формы (рис. ниже). Затем бетонируют элемент. После приобретения бетоном необхо­димой прочности для восприятия сил предварительного обжатия (передаточная прочность) арматуру освобождают от упоров и она, стремясь укоротиться, сжимает бетон. Передача усилия на бетон происходит благодаря сцеплению между арматурой и бетоном, а также посредством специальных анкерных устройств, находящих­ся в бетоне конструкции, если сцепления недостаточно.

Во втором случае сначала изготовляют бетонный или слабоармированный элемент с каналами или пазами (рис. ниже). При дос­тижении бетоном требуемой передаточной прочности в каналы (пазы) заводят арматуру, натягивают ее с упором натяжного при­способления на торец элемента и заанкериваюг. Таким образом, бетон оказывается обжатым. Для создания сцепления арматуры с бетоном в каналы инъектируют цементный или цементно-песчаный раствор. Если напрягаемая арматура располагается на наружной поверхности элемента (кольцевая арматура трубопроводов, резер­вуаров и т. п.), то навивка ее с одновременным обжатием бетона производится специальными навивочными машинами. После натя­жения арматуры на поверхность элемента наносят торкретирова­нием защитный слой бетона. Натяжение арматуры может произво­диться механическим, электротермическим, комбинированным и физико-химическим способами.

Способы создания предварительного напряжения

а — натяжение на упоры; б — натяжение на бетон; I — натяжение арматуры и бетонирование элемента; II, IV — готовый элемент; III — элемент во время натяжения арматуры; 1 — упор; 2 — домкрат; 3 — анкер

При механическом способе арматуру натяг ивают гидравличес­кими или винтовыми домкратами, намоточными машинами и дру­гими механизмами. При электротермическом способе арматуру нагревают электрическим током до 300-350 °С, заводят в форму и закрепляют на упорах. В процессе остывания арматура укорачива­ется и получает предварительные растягивающие напряжения. Ком­бинированный способ натяжения сочетает электротермический и механический способы натяжения арматуры, осуществляемые од­новременно. При физико-химическом способе натяжение арматуры достигается в результате расширения бетона, приготовленного на специальном напрягающем цементе (НЦ), в процессе его гидро­термической обработки.

Арматура, заложенная в бетоне, препятствует увеличению его объема и растягивается, а в бетоне возникают сжимающие напря­жения. Натяжение арматуры на упоры производится механическим, электротермическим или комбинированным способами, а на бе­тон — только механическим способом.

Основное достоинство предварительно напряженных конструк­ций — высокая трещиностойкость. При загружении предварительно напряженного элемента внешней нагрузкой в бетоне растянутой зоны погашаются предварительно созданные сжимающие напряжения и только после этого возникают растягивающие напряжения. Чем выше прочность бетона и стали, тем большее предварительное обжатие можно создать в элементе.

Применение высокопрочных материалов позволяет сократить рас­ход арматуры на 30-70% по сравнению с ненапрягаемым железобето­ном. Расход бетона и масса конструкции при этом также снижаются. Кроме того, высокая трещиностойкость предварительно напряженных конструкций повышает их жесткость, водонепроницаемость, морозо­стойкость, сопротивление динамическим нагрузкам, долговечность.

К недостаткам предварительно напряженного железобетона следует отнести то, что процесс составляет значительную трудоем­кость изготовления конструкций. Помимо этого создается необхо­димость в использовании специального оборудования и рабочих высокой квалификации.

Напряженно-деформированные состояния предварительно на­пряженных элементов после образования трещин в бетоне растяну­той зоны сходны с элементами без предварительного напряжения.

Источник

Оцените статью
Разные способы