- Создание объектов
- Переменные ссылочного типа и присваивание
- Инициализаторы объектов
- Классы. Объектно-ориентированное программирование
- Классы и объекты
- Поля и методы класса
- Создание объекта класса
- Конструктор по умолчанию
- Обращение к функциональности класса
- Классы и объекты
- Определение классов в C++
- Переменные и методы класса
- Создание объектов класса
- Указатель this
- Указатели на объекты
- Конструктор класса (Constructor)
- Перегрузка конструктора класса
- Копирующий конструктор (Copy Constructor)
- Деструктор класса
- Объектно-ориентированное программирование в C++ (ООП)
- Инкапсуляция данных — Encapsulation
- Setters and Getters
- Наследование (Inheritance) в C++
- Полиморфизм (Polymorphism)
- Заключение
Создание объектов
Для объявления объекта произвольного типа используется следующая конструкция:
Эта строка объявления выполняет три функции. Во-первых, объявляется переменная myinfo, относящаяся к типу класса InfoUser. Сама эта переменная не является объектом, а лишь переменной, которая может ссылаться на объект. Во-вторых, создается конкретная, физическая, копия объекта. Это делается с помощью оператора new. И наконец, переменной myinfo присваивается ссылка на данный объект. Таким образом, после выполнения анализируемой строки объявленная переменная myinfo ссылается на объект типа InfoUser.
Оператор new динамически (т.е. во время выполнения) распределяет память для объекта и возвращает ссылку на него, которая затем сохраняется в переменной. Следовательно, в C# для объектов всех классов должна быть динамически распределена память.
То обстоятельство, что объекты классов доступны по ссылке, объясняет, почему классы называются ссылочными типами. Главное отличие типов значений от ссылочных типов заключается в том, что именно содержит переменная каждого из этих типов. Так, переменная типа значения содержит конкретное значение, а ссылочная переменная содержит не сам объект, а лишь ссылку на него.
Переменные ссылочного типа и присваивание
В операции присваивания переменные ссылочного типа действуют иначе, чем переменные типа значения, например типа int. Когда одна переменная типа значения присваивается другой, ситуация оказывается довольно простой. Переменная, находящаяся в левой части оператора присваивания, получает копию значения переменной, находящейся в правой части этого оператора.
Когда же одна переменная ссылки на объект присваивается другой, то ситуация несколько усложняется, поскольку такое присваивание приводит к тому, что переменная, находящаяся в левой части оператора присваивания, ссылается на тот же самый объект, на который ссылается переменная, находящаяся в правой части этого оператора. Сам же объект не копируется. В силу этого отличия присваивание переменных ссылочного типа может привести к несколько неожиданным результатам.
В качестве примера рассмотрим следующий фрагмент кода:
Когда переменная Car1 присваивается переменой Car2, то в конечном итоге переменная Car2 просто ссылается на тот же самый объект, что и переменная Car1. Следовательно, этим объектом можно оперировать с помощью переменной Car1 или Car2. Несмотря на то что обе переменные, Car1 и Car2, ссылаются на один и тот же объект, они никак иначе не связаны друг с другом.
Инициализаторы объектов
предоставляют способ создания объекта и инициализации его полей и свойств. Если используются инициализаторы объектов, то вместо обычного вызова конструктора класса указываются имена полей или свойств, инициализируемых первоначально задаваемым значением. Следовательно, синтаксис инициализатора объекта предоставляет альтернативу явному вызову конструктора класса. Синтаксис инициализатора объекта используется главным образом при создании анонимных типов в LINQ-выражениях. Но поскольку инициализаторы объектов можно, а иногда и нужно использовать в именованном классе, то ниже представлены основные положения об инициализации объектов.
Ниже приведена общая форма синтаксиса инициализации объектов:
где имя обозначает имя поля или свойства, т.е. доступного члена класса, на который указывает имя_класса. А выражение обозначает инициализирующее выражение, тип которого, конечно, должен соответствовать типу поля или свойства.
Инициализаторы объектов обычно не используются в именованных классах, хотя это вполне допустимо. Вообще, при обращении с именованными классами используется синтаксис вызова обычного конструктора.
Пример использования инициализаторов объекта:
Источник
Классы. Объектно-ориентированное программирование
Классы и объекты
C# является полноценным объектно-ориентированным языком. Это значит, что программу на C# можно представить в виде взаимосвязанных взаимодействующих между собой объектов.
Описанием объекта является класс , а объект представляет экземпляр этого класса. Можно еще провести следующую аналогию. У нас у всех есть некоторое представление о человеке, у которого есть имя, возраст, какие-то другие характеристики. То есть некоторый шаблон — этот шаблон можно назвать классом. Конкретное воплощение этого шаблона может отличаться, например, одни люди имеют одно имя, другие — другое имя. И реально существующий человек (фактически экземпляр данного класса) будет представлять объект этого класса.
В принципе ранее уже использовались классы. Например, тип string , который представляет строку, фактически является классом. Или, например, класс Console , у которого метод WriteLine() выводит на консоль некоторую информацию. Теперь же посмотрим, как мы можем определять свои собственные классы.
По сути класс представляет новый тип, который определяется пользователем. Класс определяется с помощью ключевого слова сlass :
После слова class идет имя класса и далее в фигурных скобках идет собственно содержимое класса. Например, определим в файле Program.cs класс Person, который будет представлять человека:
Однако такой класс не особо показателен, поэтому добавим в него некоторую функциональность.
Поля и методы класса
Класс может хранить некоторые данные. Для хранения данных в классе применяются поля . По сути поля класса — это переменные, определенные на уровне класса.
Кроме того, класс может определять некоторое поведение или выполняемые действия. Для определения поведения в классе применяются методы.
Итак, добавим в класс Person поля и методы:
В данном случае в классе Person определено поле name , которое хранит имя, и поле age , которое хранит возраст человека. В отличие от переменных, определенных в методах, поля класса могут иметь модификаторы, которые указываются перед полем. Так, в данном случае, чтобы все поля были доступны вне класса Person поля определены с модификатором public .
При определении полей мы можем присвоить им некоторые значения, как в примере выше в случае переменной name . Если поля класса не инициализированы, то они получают значения по умолчанию. Для переменных числовых типов это число 0.
Также в классе Person определен метод Print() . Методы класса имеют доступ к его поля, и в данном случае обращаемся к полям класса name и age для вывода их значения на консоль. И чтобы этот метод был виден вне класса, он также определен с модификатором public .
Создание объекта класса
После определения класса мы можем создавать его объекты. Для создания объекта применяются конструкторы . По сути конструкторы представляют специальные методы, которые называются так же как и класс, и которые вызываются при создании нового объекта класса и выполняют инициализацию объекта. Общий синтаксис вызова конструктора:
Сначала идет оператор new , который выделяет память для объекта, а после него идет вызов конструктора .
Конструктор по умолчанию
Если в классе не определено ни одного конструктора (как в случае с нашим классом Person), то для этого класса автоматически создается пустой конструктор по умолчанию, который не принимает никаких параметров.
Теперь создадим объект класса Person:
Для создания объекта Person используется выражение new Person() . В итоге после выполнения данного выражения в памяти будет выделен участок, где будут храниться все данные объекта Person. А переменная tom получит ссылку на созданный объект, и через эту переменную мы можем использовать данный объект и обращаться к его функциональности.
Обращение к функциональности класса
Для обращения к функциональности класса — полям, методам (а также другим элементам класса) применяется точечная нотация точки — после объекта класса ставится точка, а затем элемент класса:
Например, обратимся к полям и методам объекта Person:
Источник
Классы и объекты
В данном уроке мы рассмотрим классы в C++ и познакомимся с объектно-ориентированным программированием. Объектно-ориентированное программирование или ООП — это одна из парадигм программирования. Парадигма — это, другими словами, стиль. Парадигма определяет какие средства используются при написании программы. В ООП используются классы и объекты. Все наши предыдущие программы имели элементы разных парадигм: императивной, процедурной, структурной.
Мы можем написать одинаковую программу в разных парадигмах. Парадигмы не имеют чёткого определения и часто пересекаются.
Давайте посмотрим на пример. Допустим, в нашей игре есть танки и они могут стрелять, при стрельбе у них уменьшается боезапас. Как мы можем это смоделировать без ООП:
У нас есть структура, которая содержит поле, представляющее количество снарядов, и есть функция атаки, в которую мы передаём танк. Внутри функции мы меняем количество снарядов. Так может выглядеть игра на языке C: структуры отдельно от функций, которые совершают действия со структурными переменными. Данную ситуацию можно смоделировать по-другому с помощью объектно-ориентированного программирования (Object-Oriented Programming, OOP) — ООП.В ООП действия привязываются к объектам.
Определение классов в C++
Класс — это пользовательский тип данных (также как и структуры). Т.е. тип данных, который вы создаёте сами. Для этого вы пишете определение класса. Определение класса состоит из заголовка и тела. В заголовке ставится ключевое слов class, затем имя класса (стандартный идентификатор C++). Тело помещается в фигурные скобки. В C++ классы и структуры почти идентичны. В языке C в структурах можно хранить только данные, но в C++ в них можно добавить действия.
В C++ ключевые слова struct и class очень близки и могут использоваться взаимозаменяемо. У них есть только одно отличие (об этом ниже). Вот как можно определить такой же класс с помощью struct:
Отличие только первом ключевом слове. В одном из прошлых уроков мы уже обсуждали структуры. что мы видим новое? Ключевые слова private и public — это спецификаторы доступа. Также мы видим, что внутри класса мы можем вставлять определения функций.
Определение класса это чертёж. Оно говорит нам из каких данных состоит класс и какие действия он может совершать. т.е. происходит объединение данных и действий в одной сущности.
Переменные и методы класса
Класс состоит из членов класса (class members). Члены класса могут быть переменными (data members) или методами (function members или methods). Переменные класса могут иметь любой тип данных (включая другие структуры и классы). Методы — это действия, которые может выполнять класс. По сути, это обычные функции.
Все методы класса имеют доступ к переменным класса. Обратите внимание, как мы обращаемся к ammo в методе Attack.
Создание объектов класса
Теперь у нас есть свой тип данных и мы можем создавать переменные данного типа. Если после определения структур мы могли создавать структурные переменные, то в случае классов, мы создаём объекты классов (или экземпляры). Разница между классами и структурами только в терминах. Для C++ это почти одно и то же.
Вот так мы можем создать объекты класса Tank и вызвать метод Attack:
t1 и t2 — объекты класса Tank. Для C++ объект класса — это всего-лишь переменная. Тип данных этих переменных — Tank. Ещё раз повторю, что классы (и структуры) позволяют создавать пользовательские типы данных.
В англоязычной литературе создание объектов классов также называется созданием экземпляров — instantiating.
Мы обращаемся к переменным класса и методам с помощью оператора точки (прямой доступ), также как мы обращались к полям структурных переменных.
В нашем примере каждый объект имеет доступ к своей копии ammo. ammo — переменная класса (data member). Attack — метод класса. У каждого объекта своя копия переменных класса, но все объекты одного класса вызывают одни и те же методы.
Размер объекта включает все данные, но не методы
В памяти переменные класса располагаются последовательно. Благодаря этому мы можем создавать массивы объектов и копировать их все вместе (если в классе этих объектов нет динамического выделения памяти). Это будет важно для нас, когда мы начнём работать с графикой в DirectX/OpenGL. Размер объекта класса можно узнать с помощью функции sizeof. При этом в качестве аргумента можно использовать как объект, так и сам класс:
Методы — это все лишь функции. Но в отличии от простых функций, у всех методов есть один скрытый параметр — указатель на объект, который вызывает данный метод. Именно благодаря этому указателю метод знает, какой объект вызвал его и какому объекту принадлежат переменные класса. Внутри метода имя этого указателя — this.
Указатель this
Вот как для компилятора выглядит любой метод:
Это просто иллюстрация. В реальности не нужно указывать аргумент (всё что в круглых скобках). Мы автоматически получаем доступ к указателю this. В данном случае его использование перед ammo необязательно, компилятор автоматически привяжет эту переменную к this.
Указатель this нужен, когда методу необходимо вернуть указатель на текущий объект.
Указатели на объекты
При работе с объектам в C++ вам неизбежно придётся работать с указателями (и ссылками). Как мы помним, при передаче в функцию по значению создаётся копия переменной. Если у вас сложный класс, содержащий большой массив или указатели, то копирование такого объекта может потребовать ненужное выделение дополнительной памяти или может быть вообще невозможным, в случае если в классе вы динамически выделяете память. Поэтому очень часто объекты создаются динамически. Для доступа к таким объектам используется оператор непрямого доступа (стрелочка):
При использовании ссылки на объект, для доступа к его членам используется оператор прямого доступа (точка), т.е. с ссылкой можно обращаться как с обычным объектом:
Чуть ниже мы увидим один случай, когда не обойтись без ссылок.
Конструктор класса (Constructor)
Конструктор класса — метод, вызываемый автоматически при создании объекта. Он используется для инициализации переменных класса и выделении памяти, если это нужно. По сути это обычный метод. Имя обязательно должно совпадать с именем класса и он не имеет возвращаемого значения. Рассмотрим новый класс:
Здесь, в конструкторе задаются начальные значения переменных, но мы можем делать в нём всё что угодно, это обычная функция.
Перегрузка конструктора класса
Перегрузка (overloading) конструктора позволяет создать несколько конструкторов для одного класса с разными параметрами. Всё то же самое, что и при перегрузке функций:
Начальные значения можно задавать в виде списка инициализации. Выше в конструкторе мы инициализировали переменные внутри тела. Список инициализации идёт перед телом конструктора и выглядит так:
В списке инициализации можно задать значение только части переменных класса.
Копирующий конструктор (Copy Constructor)
Без каких-либо действий с нашей стороны мы можем присваивать объектам другие объекты:
Здесь используется копирующий конструктор. Копирующий конструктор по умолчанию просто копирует все переменные класса в другой объект. Если в классе используется динамическое выделение памяти, то копирующий конструктор по умолчанию не сможет правильно создать новый объект. В таком случае вы можете перегрузить копирующий конструктор:
В копирующем конструкторе всегда используются ссылки. Это обязательно. Параметр point — это объект, стоящий справа от оператора присваивания.
Деструктор класса
Деструктор класса — метод, вызываемый автоматически при уничтожении объекта. Это происходит, например, когда область видимости объекта заканчивается. Деструктор нужно писать явно, если в классе происходит выделение памяти. Соответственно, в деструкторе вам необходимо освободить все указатели.
Допустим в нашем танке есть экипаж, пусть это будет один объект типа Unit. При создании танка мы выделяем память под экипаж. В деструкторе нам нужно будет освободить память:
Имя деструктора совпадает с именем класса и перед ним ставится тильда
. Деструктор может быть только один.
Объектно-ориентированное программирование в C++ (ООП)
Теперь, когда мы представляем что такое классы и объекты, и умеем с ними работать, можно поговорить о объектно-ориентированном программировании. Сам по себе стиль ООП предполагает использование классов и объектов. Но помимо этого, у ООП есть ещё три характерные черты: инкапсуляция данных, наследование и полиморфизм.
Инкапсуляция данных — Encapsulation
Что означает слово Encapsulation? Корень — капсула. En — предлог в. Инкапсуляция — это буквально помещение в капсулу. Что помещается в капсулу? Данные и действия над ними: переменные и функции. Инкапсуляция — связывание данных и функций. Давайте ещё раз взглянем на класс Tank:
Собственно, здесь в класс Tank мы поместили переменную ammo и метод Attack. В методе Attack мы изменяем ammo. Это и есть инкапсуляция: члены класса (данные и методы) в одном месте.
В C++ есть ещё одно понятие, которое связано с инкапсуляцией — сокрытие данных. Сокрытие предполагает помещение данных (переменных класса) в область, в которой они не будут видимы в других частях программы. Для сокрытия используются спецификаторы доступа (access specifiers). Ключевые слова public и private и есть спецификаторы доступа. public говорит, что весь следующий блок будет видим за пределами определения класса. private говорит, что только методы класса имеют доступ к данным блока. Пример:
Здесь мы видим, что объект может получить доступ только к членам класса, находящимся в блоке public. При попытке обратиться к членам класса (и переменным, и методам) блока private, компилятор выдаст ошибку. При этом внутри любого метода класса мы можем обращаться к членам блока private. В методе Move мы изменяем скрытые переменные x и y.
Хороший стиль программирования в ООП предполагает сокрытие всех данных. Как тогда задавать значения скрытых данных и получать доступ к ним? Для этого используются методы setters и getters.
Setters and Getters
Setters и Getters сложно красиво перевести на русский. В своих уроках я буду использовать английские обозначения для них. Setter (set — установить) — это метод, который устанавливает значение переменной класса. Getter (get — получить) — метод, который возвращает значение переменной:
Имена не обязательно должны включать Set и Get. Использование setters и getters приводит к увеличению количества кода. Можно ли обойтись без инкапсуляции и объявить все данные в блоке public? Да, можно. Но данная экономия кода имеет свои негативные последствия. Мы будем подробно обсуждать данный вопрос, когда будем говорить об интерфейсах.
Следующая концепция ООП — наследование.
Наследование (Inheritance) в C++
Производный класс не может получить доступ к private членам. Поэтому в классе Unit используется спецификатор protected. Данный спецификатор разрешает доступ к данным внутри класса и внутри дочерних классов, private же разрешает доступ только в методах самого класса.
При наследовании производный класс имеет доступ ко всем членам (public и protected) базового класса. Именно поэтому мы можем вызвать метод Move для объекта типа Archer.
Обратите внимание, как происходит наследование. При определении дочернего класса, после имени ставится двоеточие, слово public и имя базового класса. В следущем уроке мы рассмотрим для чего здесь нужно слово public.
Полиморфизм (Polymorphism)
Наследование открывает доступ к полиморфизму. Poly — много, morph — форма. Это очень мощная техника, которую мы будем использовать постоянно.
Полиморфизм позволяет поместить в массив разные типы данных:
Мы создали массив указателей на Unit. Но C++ позволяет поместить в такой указатель и указатель на любой дочерний классс. Данная техника будет особенно полезна, когда мы изучим виртуальные функции.
Заключение
Классы позволяют легко моделировать лубую предметную область. Иногда лучше избежать использование ООП, но об этом мы поговорим в другой раз.
В следующем уроке мы познакомимся с более сложными концепциями, касающимися классов: виртуалье методы, шаблоны, статичные члены. Впоследствии мы увидим, как классы используютя в DirectX.
Единственное отличие между классом и структурой в C++: по умолчанию в структуре используется спецификатор доступа public, а в классе — private. Часто в коде вы будете видеть, что структуры используются без методов, чисто для описания каких-либо сущностей. Но это делать необязательно это всего лишь соглашение.
Источник