Методы создания магнитного поля
Лабораторная работа № 2-28
Цель работы: Ознакомиться с одним из широко используемых на практике методов измерения и исследования, магнитных полей с помощью датчика Холла; исследовать магнитное поле внутри длинного соленоида
Приборы и принадлежности:соленоид, датчик Холла, блок питания для соленоида, источник питания для датчика Холла, милливольтметр для измерения электродвижущей силы (э.д.с.) Холла.
Краткое теоретическое введение
Методы создания магнитного поля
При исследовании некоторых свойств вещества, при изучении движения заряженных частиц по необходимым траекториям часто возникает необходимость в создании магнитных полей различных конфигураций.
Простейшим устройством, создающим магнитное поле, является проводник с током (рис. 1 а). В пространстве вокруг него существует неоднородное поле.
Для того, чтобы иметь представление о распределении магнитных полей в пространстве, удобно использовать графический способ представления полей — при помощи силовых линий магнитной индукции.
Линии магнитной индукции — это такие линии, касательные к которым в каждой точкеполя совпадают с направлением вектора магнитной индукции в этой точке (рис. 1, точки A, C, D). На рис. 1 представлены различные конфигурации проводников с током и расположение линий магнитной индукции вокруг них. Здесь видны особенности линий магнитной индукции, которые отражают важные свойства магнитных полей.
Линии магнитной индукции всегда замкнуты: они не имеют ни начала, ни конца. Это говорит о том, что магнитное поле – вихревое поле.
|
Для определения направления вектора магнитной индукции поля, созданного вокруг проводника с током используют либо правило буравчика (штопора) , либо правило правой руки.
Согласно правилу буравчика, если ток течет по прямому проводнику ( прямой ток), то в этом направлении должен перемещаться буравчик. Тогда направление вращения ручки буравчика покажет направление силовых линий магнитного поля, созданного током в проводнике. Если ток течет по замкнутому проводнику (контурный ток), то направление вращения ручки буравчика совпадает с направлением тока в витке, тогда направление перемещения буравчика покажет направление вектора магнитной индукции, созданной током в витке на своей оси.
Чтобы определить направление силовых линий магнитного поля созданного током в прямом проводнике нужно охватить проводник правой рукой, направив отогнутый большой палец по направлению тока, кончики остальных пальцев в данной точке покажут направление вектора индукции в этой точке.
Из рисунков 1 б и в видно, что магнитное поле, созданное замкнутыми токами также, как и поле прямого тока неоднородно.
Если нужно получить однородное магнитное поле, то можно взять два соосно расположенных на близком расстоянии друг от друга витка с током. Между витками будет существовать довольно протяженная область пространства с однородным магнитным полем. ( рис. 1д).
Для получения однородного магнитного поля используют катушку в виде намотанного на цилиндрическую поверхность изолированного проводника, которые образуют винтовую линию. Такое устройство называют соленоидом или катушкой индуктивности. Если витки расположены вплотную или очень близко друг к другу, то соленоид можно рассматривать как систему последовательно соединенных круговых токов одинакового радиуса с общей осью (рис. 1д). Силовые линии магнитного поля поля соленоида выглядят примерно так, как показано на рис. 1 д.
В средней части внутри полости соленоида, длина которого значительно больше диаметра, магнитное поле направлено параллельно вдоль оси соленоида. Оно однородно в середине соленоида и спадает к его концам. В теории электромагнетизма для количественного описания явлений используют две векторные величины, характеризующие магнитные поля. Это вектор магнитной индукции и вектор напряженности магнитного поля
. Для рассматриваемого нами случая, величина напряженности магнитного поля внутри соленоида Н пропорциональна силе тока I и определяется по формуле
где n0 — число витков на единицу длины n0=N/l (N – общее число витков соленоида, l – длина соленоида, рис. 2). Напряженность магнитного поля в системе СИ имеет размерность [А/м].
Вектор магнитной индукции связан с вектором напряженности магнитного поля
выражением:
, (2)
где m0 — так называемая магнитная постоянная (m0 = 4p´10 -7 Гн/м), m — безразмерная величина, характеризующая магнитные свойства среды и называемая относительной магнитной проницаемостью среды. Для вакуума μ = 1. Индукцию магнитного поля в единицах СИ измеряют в Теслах [Тл].
Величина индукции магнитного поля на оси длинного соленоида конечной длины (сравнительно с его диаметром) вычисляется по формуле
где a1 и a2 — углы, под которыми видны концы соленоида из точки А на его оси, к которой относится величина В. В случае достаточно длинного соленоида, когда углы α1 и α2 близки к нулю, формула (3) приводится к виду:
|
Простые соленоиды позволяют получать поля до 0,2 Тл. Соленоиды с охлаждением обмотки позволяют получать поля до 10 Тл. Через такой соленоид пропускается ток в десятки килоампер, а расход воды для охлаждения составляет сотни кубометров в секунду.
Внутри соленоида направление линий магнитной индукции образует с направлением тока в витках правовинтовую систему. Это позволяет использовать правило правой руки для определения направления силовых линий магнитного поля как это показано на рис. 1.
У реального соленоида имеется составляющая тока
Рис.1 |
вдоль оси. Кроме того, линейная плотность тока (равная отношению силы тока dI к элементу длины соленоида)dlизменяется периодически при перемещении вдоль соленоида. Среднее значение этой плотности равно
(4)
В учении об электромагнетизме большую роль играет воображаемый бесконечно длинный соленоид, у которого отсутствует осевая составляющая тока и, кроме того, линейная плотность тока постоянна по всей длине соленоида. Причина этого заключается в том, что поле такого соленоида однородно и ограничено объемом соленоида (аналогично электрическое поле плоского конденсатора, которое однородно и ограничено объемом конденсатора).
В соответствии с выше сказанным можно представить соленоид в виде бесконечного тонкостенного цилиндра, обтекаемого током с постоянной линейной плотностью (рис. 3).
Разобьем цилиндр на одинаковые круговые токи — «витки». На рис. 4 видно, что каждая пара витков, расположенная симметрично относительно некоторой плоскости, перпендикулярной к оси соленоида, создает в любой точке этой плоскости магнитную индукцию, параллельную оси. Следовательно, и результирующее поле в любой точке внутри и вне бесконечного соленоида может иметь лишь направление, параллельное оси.
Рис.2 |
Из рис. 1 д вытекает, что направление поля внутри и вне конечного соленоида противоположны. При увеличении длины соленоида, направления полей не изменяются и в пределе, при l®¥ остаются противоположными. Для бесконечного соленоида, как и для конечного, направление поля внутри соленоида образует с направлением обтекания цилиндра правовинтовую систему.
Из параллельности вектора оси соленоида вытекает, что поле как внутри, так и вне бесконечного соленоида должно быть однородным.
Поле как внутри, так и вне бесконечного соленоида является конечным. Причем, вне соленоида поле очень слабое и близко к нулевым значениям. Внутри бесконечно длинного соленоида магнитное поле значительно и определяется выражением:
где произведение n0I называется числом ампер-витков на метр.
Если соленоид является конечным, то, как уже указывалось ранее, индукция магнитного поля в центре на оси соленоида определяется выражением (3).
В магнитную индукцию на оси соленоида симметрично расположенные витки вносят одинаковый вклад. Поэтому у конца полубесконечного соленоида на его оси магнитная индукция равна половине значения в представленной формуле (5):
Практически, если длина соленоида значительно больше, чем его диаметр, формулы (5) и (6) будут справедливы с большой степенью точности.
Источник
Магнитное поле
Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.
Природа магнетизма
Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.
Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.
Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.
Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.
Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).
Магнитные линии и магнитный поток
Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.
Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.
Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.
Если приблизить два разноименных полюса, то произойдет притягивание магнитов
Если же приблизить одноименными полюсами, то произойдет их отталкивание
Итак, ниже важные свойства магнитных силовых линий.
- Магнитные линии не поддаются гравитации.
- Никогда не пересекаются между собой.
- Всегда образуют замкнутые петли.
- Имеют определенное направление с севера на юг.
- Чем больше концентрация силовых линий, тем сильнее магнитное поле.
- Слабая концентрация силовых линий указывает на слабое магнитное поле.
Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.
Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?
Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».
В физике формула магнитного потока записывается как
Ф — магнитный поток, Вебер
В — плотность магнитного потока, Тесла
а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах
S — площадь, через которую проходит магнитный поток, м 2
Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.
Напряженность магнитного поля
Формула напряженности
Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой
H — напряженность магнитного поля, Ампер/метр
B — плотность магнитного потока, Тесла
μ0 — магнитная постоянная = 4π × 10 -7 Генри/метр или если написать по человечески 1,2566 × 10 -6 Генри/метр.
Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.
μ — это относительная магнитная проницаемость.
У разных веществ она разная
Напряженность магнитного поля проводника с током
Итак, имеем какой-либо проводник, по которому течет электрический ток.
Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой
H — напряженность магнитного поля, Ампер/метр
I — сила тока, текущая через проводник, Ампер
r — расстояние до точки, в которой измеряется напряженность, метр
Магнитное поле проводника с током
Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.
Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.
Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.
Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.
Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?
Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.
Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.
Соленоид
А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.
Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.
Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.
Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.
Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.
Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.
I — это сила тока в катушке, Амперы
N — количество витков катушки, штуки)
Также советую посмотреть очень простое и интересное видео про магнитное поле.
Похожие статьи по теме «магнитное поле»
Источник