Способы соединения деталей с натягом

Способы соединения деталей с натягом

20. Соединения с натягом: достоинства и недостатки, область применения. Способы получения соединений с натягом. Принцип работы (передачи нагрузки) соединения с натягом.

Соединения деталей с натягом — это соединения, в кото­рых детали удерживаются силами трения. Силы трения обус­ловлены созданием распределенной нормальной нагрузки (давления) на сопряженных поверхностях соединяемых дета­лей. Величина нормальной нагрузки зависит от величины на­тяга. Натяг — это разность размеров охватываемой и охваты­вающей деталей. Посадочный размер охватываемой детали де­лают несколько больше посадочного размера охватывающей детали. После сборки посадочный размер деталей становится общим, при этом посадочный размер охватывающей детали в результате упругих деформаций увеличивается, а охватывае­мой — уменьшается.

Передача соединением нагрузок (сил, моментов) осуществ­ляется за счет сил трения (сцепления), действующих на по­верхности контакта деталей. Наиболее часто встречаются со­единения деталей по цилиндрическим или коническим по­верхностям.

Эти соединения применяют для установки на валы зубчатых колес, колец подшипников качения и других деталей. Соеди­нения с натягом также применяют для изготовления сложных составных деталей (коленчатые валы, составные зубчатые и червячные колеса и др.). Соединяемые детали могут быть изго­товлены из одинаковых или разных материалов.

Достоинства соединений: достаточно простая технология получения соединения; хорошее центрирование соединяемых деталей; способность воспринимать значительные динамиче­ские нагрузки, удары, колебания.

Недостатки: большое рассеяние прочности соединения сре­ди одной партии в связи с разбросом действительных размеров сопрягаемых поверхностей деталей в пределах их полей допу­сков и значений коэффициента трения; снижение усталостной прочности валов в зоне посадки вследствие концентрации на­пряжений; трудности неразрушающего контроля прочности соединения; сложность сборки и разборки при больших натя­гах и размерах соединяемых деталей; возможность поврежде­ния посадочных поверхностей при разборке.

Различают следующие способы получения соединения с на­тягом:

Запрессовка — простейший способ, при наличии необходи­мого оборудования обеспечивающий возможность контроля за нагрузкой отдельного соединения путем измерения силы за­прессовки. Однако при запрессовке существует опасность по­вреждения посадочных поверхностей, кроме того, снижается коэффициент трения (сцепления) из-за сглаживания микроне­ровностей на поверхности контакта.

Нагрев охватывающей детали — технологически отрабо­танный способ, обеспечивающий высокий коэффициент тре­ния (сцепления) и, как следствие, повышение нагрузочной способности соединения в 1,5 раза по сравнению с запрессов­кой, так как отсутствует сглаживание микронеровностей на поверхности контакта. Однако контроль нагрузочной способ­ности такого соединения затруднен.

Охлаждение охватываемой детали применяют для установ­ки с натягом небольших деталей в крупные детали (корпуса машин, станины); по свойствам этот способ аналогичен нагре­ву охватывающей детали.

Гидрозапрессовка — нагнетание масла под давлением в зону контакта через сверления в валу, что значительно (в 10— 15 раз) снижает необходимую силу запрессовки и распрессов ки и уменьшает опасность задира посадочных поверхностей; наиболее эффективен этот способ при больших диаметрах по­садки и в соединениях по конической поверхности.

21. Расчет соединений с натягом, нагруженных осевой силой, крутящим моментом и силой, действующей совместно с моментом.

При нагружении осевой силой:

Условие несдвигаемости — и, вводя коэффициент запаса s , получаем:

При нагружении крутящим моментом:

Условие несдвигаемости , и, вводя коэффициент запаса s , получаем:

При одновременном нагружении крутящим моментом и осевой силой расчет ведут приближенно по равнодействующей силе от окружной силы и осевой силы, .

Тогда потребное давление будет

Источник

Соединения с натягом

Соединения с натягом применяют для неразборных или редко разбираемых сопряжений. Сопротивление взаимному смещению деталей в этих соединениях создается и поддерживается силами упругой деформации сжатия (в охватываемой детали) и растяжения (в охватывающей детали), пропорциональными величине натяга в соединении.

Посадки с натягом. ЕСДП устанавливает следующие посадки с натягом: от р до z (в системе отверстия) и от Р до Z (в системе вала).

Читайте также:  Способы урегулирования международного спора

На рис. 517, а приведены средние значения натягов Δср в функции диаметра вала d для различных посадок, а на рис. 517, б — средине значения относительных натягов Δср/d.

Относительные натяги резко возрастают в области малых диаметров. Это заставляет особенно осторожно подходить к расчету соединений малого диаметра, так как прочность деталей соединений зависит прежде всего от относительного натяга.

Несущая способность. Наибольшая осевая сила, которую может выдержать соединение,

где k — давление на посадочной поверхности, МПа; F = πdl — площадь посадочной поверхности, мм 2 (d и l — диаметр и длина посадочной поверхности); f — коэффициент трения между сопрягающимися поверхностями (для сталей и чугунов в среднем f = 0,10—0,15).

Наибольший крутящий момент, передаваемый соединением,

Давление k на посадочных поверхностях зависит от натяга и толщины стенок охватывающей и охватываемой деталей. Согласно формуле Ламе

где Δ/d — относительный диаметральный натяг; θ — коэффициент; Δ — в мм; d — в мм;

здесь E1, E2 и μ1, μ2 — соответственно модули нормальной упругости и коэффициенты Пуассона материалов охватываемой и охватывающей деталей; с1 и с2 — коэффициенты;

причем d1 и d2 — соответственно внутренний диаметр схватываемой детали и наружный диаметр охватывающей детали (рис. 518).

Давление k, а, следовательно, и несущая способность соединения пропорциональны относительному диаметральному натягу Δ/d, возрастают с увеличением модуля упругости материалов и уменьшаются с увеличением с1 и с2, т. е. с увеличением тонкостенности.

Решение Ламе (соединение бесконечной длины) предполагает равномерное распределение давления по длине соединения и дает средние значения k. В соединениях конечной длины, как показывает точный расчет (Парсонс), на кромках возникают скачки давления, пропорциональные жесткости втулки и величине k. Максимальное давление на кромках превышает номинальное давление k в 2—3,5 раза (рис. 519).

Скачки можно практически устранить и сделать давление приблизительно постоянным с помощью разгружающих фасок на втулке, утонения втулки к краям и бомбиниронания вала.

Назовем a1 = d1/d и а2 = d/d2 относительной тонкостенностью соответственно охватываемой и охватывающей деталей. Значения а1 = а2 = 0 соответствуют случаю массивных охватываемой и охватывающей деталей; значения а1 и а2, близкие к 1, — случаю тонкостенных деталей.

Коэффициенты с1 и с2 можно представить в общем виде следующим образом:

Это соотношение представлено графически на рис. 520.

Напряжение сжатия в охватываемой детали максимально на внутренней поверхности:

Напряжение растяжения в охватывающей детали максимально на внутренней поверхности:

Уменьшение внутреннего диаметра охватываемой детали

Увеличение наружного диаметра охватывающей детали

Максимально допустимое давление на посадочной поверхности определяется прочностью на смятие kmaх = σсм, где σсм — предел прочности на смятие наиболее слабого из двух сопряженных материалов. Для улучшенных сталей можно принимать σсм = 200—250 МПа; для серых чугунов σсм = 20—50 МПа и алюминиевых сплавов σсм = 10—20 МПа.

Чаще всего несущую способность соединении лимитируют не напряжения смятия на контактных поверхностях, а напряжения растяжения в охватывающей детали или сжатия в охватываемой.

Если охватывающая и охватываемая детали выполнены из одинакового материала (Е1 = Е2 = Е; μ1 = μ2 = μ), то тогда θ = Е/(с1 + с2) и согласно формулам (119)—(121)

На рис. 521, а приведено в функции а1 и а2 относительное давление k0 = 1/(c1 + c2), представляющее собой величину давления k при ЕΔ/d = 1.

Давление (а, следовательно, и несущая способность соединения) максимально при а1 = а2 = 0, слабо снижается при увеличении а1 и а2 до

0,5 (заштрихованный участок), а с дальнейшим увеличением а1 и а2 (тонкостенные детали) резко падает, стремясь к нулю при а1 = а2 = 1.

Читайте также:  Река амазонка способ питания

Снижение давления с уменьшением толщины стенок охватываемой и охватывающей деталей можно компенсировать увеличением диаметра и длины посадочной поверхности. Если, как это обычно бывает, длина соединения пропорциональна диаметру, т. е. l = n·d (n — коэффициент пропорциональности), то согласно формулам (113) и (114) Poc = k·f·n·d 2 и Мкр = 0,5k·f·n·d 3 . Следовательно, сопротивление осевому сдвигу пропорционально квадрату, а кручение — кубу диаметра соединения. Таким образом, увеличение диаметра представляет очень эффективный способ увеличения несущей способности и снижения напряжении в охватывающей и охватываемой деталях.

Согласно формулам (123) и (124) относительные напряжения (напряжения при EΔ/d = 1)

Эти соотношения приведены на рис. 521, б. Из графика можно сделать следующие выводы:

— напряжения σ01 в охватываемой детали (жирные линии) максимальны (σ01 = 1) при массивной охватывающей детали (а2 = 0), снижаются с уменьшением толщины ее стенок (a2 à 1) и возрастают с уменьшением толщины стенок охватываемой детали (a1 à 1);

— напряжения σ02 в охватывающей детали (тонкие линии) максимальны (σ02 = 1) при массивной охватываемой детали (a1 = 0), снижаются с уменьшением толщины ее стенок (a1 à 1) и возрастают с уменьшением толщины стенок охватывающей детали (a2 à 1).

Называя охватываемую деталь валом , а охватывающую корпусом , можно сформулировать следующие практические правила:

— для увеличения прочности вала целесообразно увеличивать толщину его стенок и уменьшать толщину стенок корпуса (массивный вал — тонкостенный корпус);

— для увеличения прочности корпуса целесообразно увеличивать толщину его стенок и уменьшать толщину стенок вала (массивный корпус — тонкостенный вал).

Существенное снижение напряжении происходит только при увеличении а1 и а2 свыше 0,5. При меньших значениях а1 и а2 (заштрихованный участок) напряжения мало отличаются от напряжений в массивных деталях.

Коэффициент трения. Несущая способность прямо пропорциональна коэффициенту трения на посадочной поверхности.

Коэффициент трения зависит от давления на контактных поверхностях, размеров и профиля микронеровностей, материала и состояния сопрягающихся поверхностей (наличие смазки), а также способа сборки (соединение под прессом, с нагревом или охлаждением деталей).

Коэффициент трения возрастает с увеличением шероховатости поверхностей и снижается с повышением давления (рис. 522), так что иной раз целесообразны меньшие натяги с выгодой для прочности вала и втулки.

При сборке с нагревом или охлаждением деталей коэффициент трения в 1,3—2,5 раза выше, чем при сборке под прессом. Коэффициент трения можно значительно повысить нанесением гальванических покрытии. В зависимости от перечисленных факторов коэффициент трения f = 0,06—0,25, а иногда и выше. Ценность расчета точности состоит в том, что он позволяет определить влияние геометрических параметров и жесткости элементов соединения на несущую способность и прочность, а также наметить рациональные пути упрочнения. При расчетах придерживаются значений f = 0,10—0,15, относя возможное повышение коэффициента сверх этих значений в запас прочности.

Влияние качества поверхностей. Несущая способность соединения с натягом зависит от обработки сопрягающихся поверхностей.

В измеряемые диаметры отверстия и вала входит высота микронеровностей, которые при запрессовке сминаются. Если высота микронеровностей соизмерима с натягом, фактический натяг в соединении значительно уменьшается.

На рис. 523 приведены натяги Δmin, Δср и Δmax (штриховые линии) при посадке H7/r6 или H7/s6 для различных диаметров валов, а также нанесены суммарные высоты неровностей вала и отверстия (сплошные линии) при обработке по 4—9-му классу шероховатости (Ra = 0,2—6,3 мкм). Для соединений малого диаметра (менее 30—40 мм) обработка ниже 9-го класса (Ra = 0,2 мкм) исключается, так как суммарная высота микронеровностей становится близкой к величине Δmin. Натяг в таких соединениях может значительно уменьшиться или исчезнуть в результате смятия микронеровностей.

Читайте также:  Способы обработки низа брюк

Соединения с диаметром более 50 мм, а также соединения с большим натягом можно обрабатывать несколько грубее. Практически поверхности валов в соединениях с натягом среднего размера обрабатывают по 8—10-му классу (Ra = 0,1—0,4 мкм), а отверстий — по 7—9-му классу шероховатости (Ra = 0,2—0,8 мкм).

Микронеровности в известной мере положительно влияют на прочность соединения, действуя наподобие шипов, увеличивающих связь между сопрягающимися поверхностями. Как установлено опытами, повышение класса шероховатости свыше 11-го (Ra = 0,05 мкм) снижает несущую способность соединении вследствие уменьшения коэффициента трении на поверхностях контакта.

В формулы (119)—(121) входит действительный натяг. Поэтому при расчете заданный номинальный натяг Δном следует уменьшить на величину смятия микронеровностей

где Rz1 и Rz2 — высоты микронеровностей поверхности соответственно вала и отверстия, мкм; ϕ — коэффициент смятия.

Величина смятии микронеровностей зависит от натяга в соединении, высоты неровностей, их формы, профили и плотности распределения, твердости и прочности материала сопрягающихся поверхностей, соотношения между твердостью поверхностей охватывающей и охватываемой деталей, а также от условий сборки. При сборке под прессом неровности последовательно подвергаются срезу при продольном перемещении и сминаются гораздо больше, чем при сборке с нагревом или охлаждением деталей (когда неровности смыкаются в радиальном направлении).

Фактическая, устанавливающаяся после некоторого периода эксплуатации величина смятия, определяющая эксплуатационную надежность соединения, зависит от нагрузок, действующих на соединение. Высота неровностей уменьшается после каждой разборки-сборки, стабилизируясь на определенном уровне после трех-четырех разборок.

Учесть все эти многообразные факторы невозможно. В качестве первого приближения при расчете принимают, что смятие микронеровностей составляет 0,5—0,6 первоначальной средней высоты микронеровностей. Влияние последующей эксплуатации учитывают коэффициентом запаса, который при расчете принимают равным 1,5—3.

При ϕ = 0,5Δ’ = Rz1 + Rz2. Введем величину Δном —Δ’ в формулу (115):

Если при расчете определяют необходимый номинальный натяг , то к найденному натягу следует прибавить величину смятия микронеровностей: Δном = Δpaсч + Rz1 + Rz2.

По номинальному натягу, определенному таким образом, подбирают соответствующую посадку по ЕСДП.

Поправка на смятие микронеровностей имеет существенную величину для соединений малого диаметра. Для диаметров более 50 мм при обработке по 5-му классу шероховатости и выше поправки не превышает 10% (рис. 524), и ею можно пренебрегать, особенно если сборка производится с нагревом или охлаждением деталей.

Влияние тепловых деформаций. В соединениях, подвергающихся нагреву, следует учитывать влияние температуры на посадку. Если охватывающая деталь изготовлена из материала с более высоким коэффициентом линейного расширения или нагревается при работе больше, чем охватываемая, то при нагреве первоначальный (холодный) натяг уменьшается. Напротив, если охватываемая деталь изготовлена из материала с более высоким коэффициентом линейного расширения или нагревается при работе больше, чем охватывающая, то первоначальный натяг в соединении при нагреве увеличивается.

Если соединение при работе подвергается нагреву, то в формулы (119)—(121) следует внести температурный натяг (с его знаком)

где α1 и α2 — коэффициенты линейного расширения материала соответственно охватываемой и охватывающей деталей; Δt1 и Δt2 — увеличение температуры при нагреве соответственно охватываемой и охватывающей деталей.

Формула (115) при этом приобретает вид

Первоначальный относительный натяг, необходимый для поддержания заданного давления k при нагреве:

При посадке на валы быстроходных роторов следует еще учитывать расширение ступицы под действием центробежных сил и соответственно увеличивать первоначальный натяг.

Источник

Оцените статью
Разные способы