Способы снижения токсичности отработавших газов дизелей

Снижение токсичности отработавших газов современных дизелей

Совершенствование топливных систем

После введения в России 1 января 2008 г. норм токсичности Euro-3 дизельные двигатели, оборудованные топливными системами старой конструкции с управлением углом опережения впрыска, муфтой ТНВД с центробежным регулятором и плунжерами со спиральными отсечными кромками, не могут выполнить эти нормы. Для эффективного снижения токсичности отработавших газов (ОГ) потребовалось применить электронные системы управления и системы снижения токсичности, усовершенствовать рабочий процесс дизелей.

Микропроцессорное управление. Переход на ТНВД с электронным регулированием цикловой подачи топлива и угла опережения впрыска позволил существенно улучшить экономические и экологические показатели двигателей. Преимуществом микропроцессорного управления (МПУ) впрыском топлива является возможность установить оптимальные углы опережения в зависимости как от скоростных, так и от нагрузочных режимов работы дизеля, не привязываясь к линейным характеристикам центробежных регуляторов. Кроме того, МПУ позволяет задавать любые законы подачи топлива (применение многофазного впрыска), благодаря чему снижаются выбросы оксидов азота и расход топлива, улучшаются пусковые качества и динамика автомобиля, снижается уровень шума.

Повышение давления впрыска. Современные системы топливоподачи рассчитаны на высокие давления впрыска топлива (от 180 до 250 бар). Обычно используются три типа систем топливоподачи: с индивидуальными насосными секциями, насос-форсунки и аккумуляторные топливные системы (Common Rail). Одним из способов МПУ является применение электромагнитных клапанов, которые располагаются перед насосной секцией. Начало впрыска начинается после закрытия дренажного клапана с электромагнитым управлением от МП-системы и прекращается после его открытия.

Индивидуальные насосные секции ТНВД в современных двигателях обычно приводятся от кулачков распределительного вала, а плунжер насосной секции выполнен без отсечных кромок, что увеличивает его ресурс. Если топливопроводы высокого давления слишком длинные, в них возникают колебания давления, нарушающие процесс впрыска. В случае применения индивидуальных насосных секций длина топливопроводов сокращается, что позволяет снизить влияние этих колебаний. Однако управление давлением впрыска затруднено из-за механического привода плунжеров.

В топливных системах неразделенного типа (насос-форсунках) насосная секция объединена с форсункой, что позволяет исключить нагнетательные трубопроводы, а следовательно, и колебательные явления в них. Преимуществом насос-форсунок является также меньшее число прецизионных деталей и возможность обеспечить высокие давления впрыска. Поэтому их в основном используют на двигателях с непосредственным впрыском топлива.

В случае применения насос-форсунок основными проблемами являются перекомпоновка головки блока цилиндров с учетом увеличенных габаритов форсунок, обеспечение привода плунжеров от кулачкового вала, сложность управления давлением впрыска в зависимости от режима работы и регулировка топливоподачи каждой форсункой. В выпускаемых раньше насос-форсунках дозирование топлива осуществлялось поворотом плунжера со спиральной канавкой с помощью реечного механизма, управляемого механическим регулятором. В современных насос-форсунках, как и в индивидуальных насосах, начало впрыска начинается после закрытия электромагнитного клапана и прекращается после его открытия. Это позволяет задавать оптимальные фазы впрыска и законы подачи топлива, обеспечивающие снижение токсичности, расхода топлива, повышение мощности.

Интересной является система компании Caterpillar с механическим приводом плунжера и небольшим аккумулятором, расположенным в самой насос-форсунке (схема внизу). Величина давления впрыска определяется моментом срабатывания клапана 5. Чем позднее срабатывает клапан 5, тем выше давление впрыска. Вторая обмотка соленоида 6 управляет подъемом иглы распылителя.

Этот вариант системы обеспечивает возможность поэтапного впрыска порции топлива, резкое окончание процесса впрыска, оптимизацию характеристик впрыска во всем поле режимов работы дизеля.

Аккумуляторные топливные системы (Common Rail) обеспечивают то преимущество, что величина давления в течение всего периода впрыска постоянная, а также возможен электронный контроль момента начала и продолжительности впрыска, возможность задавать любые законы многофазного впрыска.

Аккумуляторная система включает следующие основные элементы: ТНВД непрерывного или импульсного действия, полость – топливный аккумулятор, комплект электрогидравлических форсунок с электромагнитными клапанами, регулятор давления топлива в аккумуляторе, микроконтроллер, получающий сигналы от датчиков. Топливо из бака с помощью подкачивающего насоса подается к ТНВД. Для обеспечения необходимого качества распыления топлива требуется применить насос с повышенным до 180. 220 МПа давлением впрыска. На рисунке cлева представлен трехплунжерный насос фирмы Bosch (в разрезе), обеспечивающий необходимое давление.

Читайте также:  Способы эффективного поиска профессиональной информации

Далее топливо нагнетается в общий для всех цилиндров аккумулятор большой вместимости. Из него топливо поступает к электрогидравлическим форсункам. По сигналу микроконтроллера электромагнитный клапан сбрасывает давление в управляющей камере форсунки, под действием силы давления топлива игла форсунки поднимается, открывая сопловые отверстия, через которые топливо впрыскивается в цилиндр.

При отключении управляющего сигнала электромагнитный клапан возвращается в исходное положение, сила давления топлива в управляющей камере, действующая на поршень, обеспечивает мгновенную посадку иглы форсунки.

Форсунки и их распылители. Впрыск и распыление дизельного топлива производится форсунками, которые должны обеспечить следующие требования:

  • хорошую дисперсность распыления, характеризуемую мелкими и близкими по размерам каплями, и необходимую дальнобойность струи топлива с целью распределения его по всему объему камеры сгорания;
  • высокие давления на всех фазах впрыска и заданные средние давления впрыска;
  • надежность работы и возможность обслуживания.

Размеры капель топлива, впрыскиваемого форсункой, должны быть не более 5. 40 мкм. Если капли слишком большие, затягивается процесс сгорания и начинает выделяться сажа. Слишком мелкие капли (менее 10 мкм) не попадают в отдаленные зоны камеры сгорания.

Форсунки подразделяются на открытые и закрытые. В открытых форсунках линия нагнетания соединена с камерой сгорания. На автомобильных и тракторных дизелях применяются форсунки закрытого типа с гидравлическим управлением запорным органом. Топливо от ТНВД поступает в полость перед запорной иглой. Игла начинает подниматься, когда давление топлива преодолевает усилие прижимающей пружины. Максимальный подъем иглы ограничен: она упирается в проставку или в корпус форсунки. При понижении давления под действием пружины игла опускается. На входе в форсунку установлен резервный фильтр, задерживающий частицы размером свыше 40. 50 мкм.

В вихрекамерных и предкамерных дизелях применяются штифтовые распылители. Они имеют два переменных дросселирующих сечения: одно образовано щелью между коническими запорными поверхностями, второе создается штифтом, входящим в отверстие корпуса распылителя. Угол конуса при вершине факела топлива зависит от угла конуса на нижней части штифта. При частичных нагрузках игла не доходит до упора и, занимая промежуточное положение, автоматически изменяет величину эффективного проходного сечения распылителя.

В дизелях с объемным смесеобразованием с бесштифтовыми распылителями величина эффективной площади прохода топлива определяется переменным положением конуса иглы относительно седла, зависящим от подъема иглы и размеров распыляющих отверстий. Угол запорного конуса на игле обычно составляет 60° и превышает угол конуса на седле на 30’, что обеспечивает необходимое уплотнение. Максимальный подъем иглы устанавливается в пределах 0,2. 0,3 мм. Под иглой остается колодец (объем 0,5. 1,8 мм 3 ), из которого с малой скоростью вытекает топливо в камеру сгорания. Это приводит к повышенному выбросу СН с ОГ. Диаметр и центральный угол между распыляющими отверстиями зависит от их числа (обычно 6. 8). Диаметр отверстий равен 0,16. 0,45 мм, что определяется размерами камеры сгорания.

В дизелях с пленочным и пристеночным смесеобразованием применяют одно- или двухструйные распылители с диаметром отверстий 0,4. 0,7 мм, направленные на стенку сферической поверхности в днище поршня. Габариты форсунок и их расположение определяются конструктивными особенностями головки цилиндров и формы камеры сгорания.

Системы снижения токсичности ОГ дизелей

Токсичность ОГ дизельных двигателей определяется в первую очередь тремя факторами. Первый – низкая температура ОГ и работа на бедных смесях. В результате эффективность каталитических нейтрализаторов крайне низкая. Второй фактор – повышенный выброс на некоторых режимах, особенно при прогреве, продуктов неполного сгорания с характерным неприятным запахом (акролеина, альдегидов и др.), многие из которых канцерогенные. Третий фактор – частицы сажи и твердые частицы, которые являются носителями канцерогенов. Одним из наиболее эффективных способов снижения сажеобразования является применение наддува.

Читайте также:  Способы гаструляции у плацентарных млекопитающих

Переход со стандарта Euro 3 на Euro 4 предусматривает существенное снижение допустимого содержания в ОГ дизельных двигателей СО, СН, NOx и твердых частиц (см. «Нормы Евросоюза. »). Для снижения выбросов оксидов азота применяют частичную рециркуляцию ОГ, т. е. перепуск ОГ во впускной трубопровод (английская аббревиатура – EGR). Эта технология позволяет одновременно снижать содержание сажи и NOx. Так, компания Scania разработала для своих пяти- и шестицилиндровых двигателей систему рециркуляции, в которой от 18 до 25% ОГ подается во впускной коллектор (схема слева). Это обеспечивает снижение температуры сгорания и сокращение выброса оксидов азота до современных европейских норм.

Другой способ снижения выброса NOx основан на подаче реагента AdBlue (32,5-процентный раствор карбамида (мочевины) в деионированной воде) в выхлопную трубу перед каталитическим нейтрализатором (английская аббревиатура – SCR), (cхема справа). Реакции восстановления азота проходят при температуре свыше 350 °С. Расход раствора AdBlue составляет 4. 5% расхода дизельного топлива.

Сажевый фильтр применяют для снижения выброса сажи с ОГ. В одном из вариантов конструкции, разработанном в МАДИ (ГТУ), используются фильтрующие элементы в виде полых цилиндров, изготавливаемые спеканием мелко нарезанных кусочков тонкой нихромовой проволоки. Регенерация таких фильтров осуществляется подводом к фильтрующим элементам электрического напряжения. Элементы при прохождении тока раскаляются и очищаются от сажи. Испытания, проведенные на одноцилиндровом отсеке дизеля КамАЗ, показали снижение содержания сажи в ОГ больше чем на порядок.

Восстановление оксидов азота можно обеспечить и подачей небольшой порции дизельного топлива в систему выпуска. В результате неполного сгорания углеводородов образуются химически активные вещества, восстанавливающие NOх. Количество впрыскиваемого топлива и момент подачи должны регулироваться электронной системой управления.

С целью улучшения экологических характеристик дизеля и снижения расхода дизельного топлива путем частичного его замещения альтернативным топливом (например, этиловым спиртом), ведутся работы по созданию систем для совместной подачи топлива двух видов в камеру сгорания через общую форсунку. Получены результаты, позволяющие корректировать состав топливной смеси в процессе работы.

Источник

Методы снижения токсичности отработавших газов автомобилей

Методы, используемые для снижения токсичности отработавших газов двигателей с искровым зажиганием, делятся на две основные категории: конструктивные методы и очистка отработавших газов. Основные промышленно развитые страны стремятся внедрить у себя (или уже приняли) строгие нормы предельной токсичности отработавших газов. Выполнение этих норм требует использования систем снижения токсичности, включающих трехкомпонентный каталитический нейтрализатор, который уже доказал свою эффективность в США, Европе и Японии

Снижение токсичности методом дозирования топлива

Рабочая смесь, качество которой определяется коэффициентом избытка воздуха λ, оказывает решающее влияние на состав отработавших газов.

Двигатель обеспечивает получение максимального крутящего момента при λ = 0,9 – эта величина обычно программируется для режима полной нагрузки двигателя. Оптимальная топливная экономичность достигается при смесях, характеризующихся λ = 1,1. Это совпадает с возможностью получения низких выбросов CO и CH. Однако выбросы оксидов азота (NOx) при этом оказываются максимальными. Коэффициент избытка воздуха λ = 0,9 … 1,05 выбирается для режима холостого хода двигателя.

Слишком обедненная смесь приводит к появлению пропусков воспламенения, а так как смесь постепенно обедняется и далее, это влечет за собой быстрое увеличение выбросов СН.

Для предотвращения работы двигателя на сверхвысоких оборотах, когда требуется постоянное использование богатой смеси, осуществляется полное прекращение подачи топлива к двигателю.

Системы впрыска топлива позволяют добиться более точного контроля за составом смеси и значительно снизить количество выбросов отработавших газов.

Снижение токсичности отработавших газов точным смесеобразованием

Однородность смеси, ее послойное распределение и температура в зоне свечи являются основными факторами при определении способности смеси к воспламенению и последующему сгоранию с соответствующим влиянием на состав отработавших газов.

Однородные смеси и регулируемое послойное смесеобразование (богатая смесь у свечи зажигания и бедная смесь вблизи стенок камеры сгорания) представляют два пути совершенствования процесса смесеобразования.

На двигателях с одноточечным впрыском топлива для предотвращения отложения пленки топлива на стенках впускного трубопровода используется предварительный нагрев воздуха и впускного трубопровода.

Читайте также:  Способ продажи государственной собственности

Равномерное распределение

Максимальный коэффициент полезного действия (к.п.д.) двигателя может быть достигнут только при одинаковом коэффициенте избытка воздуха в каждом цилиндре.

Рециркуляция отработавших газов как способ снижения токсичности отработавших газов

Отработавшие газы направляются обратно в камеру сгорания для снижения максимальной температуры сгорания с целью снижения образования NOx. Оптимизация системы EGR может также приводить к снижению расхода топлива. Система EGR используется любым из двух способов:

— внутренней рециркуляцией отработавших газов, обеспечиваемой соответствующей установкой фаз газораспределения (перекрытия клапанов);

— внешней рециркуляцией отработавших газов с применением управляемых клапанов.

Изменение фаз газораспределения

Большой угол перекрытия клапанов (при раннем открытии впускного клапана) позволяет увеличить внутреннюю рециркуляцию отработавших газов и поэтому может помочь в снижении выбросов NOx. Однако, так как рециркулирующие отработавшие газы вытесняют свежую топливовоздушную смесь, то раннее открытие впускного клапана также ведет к уменьшению максимального крутящего момента. Кроме того, чрезмерная рециркуляция отработавших газов, особенно при работе двигателя на холостом ходу, может стать причиной перебоев в зажигании, что, в свою очередь, приводит к увеличению выбросов углеводородов (НС). Оптимальным решением является применение изменяемых фаз газораспределения, когда фазы газораспределения варьируются для оптимального приспосабливания процесса сгорания к условиям работы двигателя.

Влияние степени сжатия на количество токсичных компонентов отработавших газов

Ранее считалось, что повышение термического коэффициента полезного действия (к.п.д.) путем роста степени сжатия представляется эффективным мероприятием для улучшения топливной экономичности. Однако при этом одновременно увеличивается и максимальная температура сгорания, которая вызывает более высокую концентрацию выбросов NOx.

Конструкция камеры сгорания

Снижение выбросов CH обеспечивается компактной камерой сгорания, имеющей минимальную площадь поверхности с отсутствием выемок. Центральное расположение свечи зажигания обеспечивает короткий путь распространения пламени, позволяя получить быстрое и относительно полное сгорание рабочей смеси, что приводит, кроме низких выбросов CH, к пониженному расходу топлива. Турбулизация рабочей смеси в камере сгорания обеспечивает более быстрое сгорание. Кроме создания двигателей, способных работать на обедненных смесях, оптимизация формы камеры сгорания дает возможность снизить концентрацию CH при λ = 1.

Создания вихревого движения смеси во впускном канале и оптимизация формы камеры сгорания позволяют использовать переобедненные рабочие смеси (λ = 1,4…1,6). Такие двигатели характеризуются низкой токсичностью и очень хорошей экономичностью, они не нуждаются в каталитической очистке отработавших газов. Разработки в области снижения выбросов NOx у двигателей, работающих на переобедненных смесях, еще находятся в начальной стадии. Такие двигатели вплоть до настоящего времени с успехом применялись в Европе и Японии. Имелось только несколько моделей, использующих концепцию обедненных смесей, когда достигался компромисс между токсичностью отработавших газов и расходом топлива.

Система зажигания автомобилей

Конструкция свечи зажигания, ее положение в камере сгорания, а также энергия и продолжительность искрового разряда – все эти параметры оказывают существенное влияние на воспламенение смеси, продолжительность ее сгорания, а поэтому и на токсичность компонентов отработавших газов. Важность этих факторов возрастает в прямой зависимости от обеднения смеси (λ > 1,1). Установка момента зажигания оказывает решающее влияние как на токсичность, так и на расход топлива. При выборе момента зажигания приходится (иногда в ущерб расходу топлива) для снижения выбросов CH и NOx выбирать более поздние углы опережения зажигания. Вместе с подачей в избытке кислорода это поднимает температуру в выпускной системе и позволяет дожигать СО и СН.

Этот метод приводит к снижению выбросов NOx и несгоревших углеводородов, но за счет увеличенного расхода топлива. С другой стороны, если выбирается слишком большое опережение зажигания, это приводит к увеличению расхода топлива и выбросов NOx и СН.

Вентиляция картера двигателя

Концентрация углеводородов в картере двигателя может во много раз превышать регистрируемую в отработавших газах. Система регулирования вентиляции картера перепускает картерные газы во впускной тракт двигателя, откуда они попадают в камеру сгорания для дожигания. Раньше эти газы выпускались неочищенными непосредственно в атмосферу; сейчас наличие системы снижения токсичности картерных газов является обязательным требованием.

Источник

Оцените статью
Разные способы