Способы снижения температуры газа
Автор: Крайнов Никита
Газы- агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь предоставленный им объём. Газы обладают рядом характерных свойств. В отличие от твёрдых тел и жидкостей, объём газа существенно зависит от давления и температуры.
Любой газ можно превратить в жидкость простым сжатием, если температура газа ниже критической. Те вещества, которые мы привыкли считать газами, просто имеют очень низкие критические температуры, то есть температуры, после достижения которых, газ приобретает свойства жидкости, и поэтому при температуре, близкой к комнатной, не могут находиться в жидком состоянии. Наоборот, у веществ, причисляемых нами к жидкостям, критические температуры велики.
Меня заинтересовал вопрос о том, какие свойства имеет сжиженный газ, в каких сферах он применяется ? Тема работы актуальна на сегодняшний день, так как сжиженные газы востребованы во многих областях медицины, науки и техники. В связи с этим я и поставил перед собой следующие цели и задачи:
Цель: -рассмотрение природы явления и свойств сжиженных газов
* Изучить материал об сжиженных газах
* Определить свойства сжиженных газов
Опытный факт охлаждения вещества при испарении был известен издавна и даже практически использовался (например, применение пористых сосудов для сохранения свежести воды). Но первое научное исследование этого вопроса предпринял Джан Франческо Чинья и описал в работе 1760 г. «De frigore ex evaporationе» («О холоде вследствие испарения»).
Проблема сжижения газов имеет вековую историю, берущую свое начало во второй половине XVIII столетия. Началось все с сжижения аммиака простым охлаждением, которое произвел ван Марум, серного ангидрида — Монж и Клуэ, хлора — Нортмор (1805 г.) и сжижения аммиака компрессионным методом, предложенным Баччелли (1812 г.).
Определяющий вклад в решение этой проблемы одновременно и независимо внесли Шарль Каньяр де Латур (1777—1859) и Майкл Фарадей (1791—1867).
Что такое сжиженный газ и его свойства
Сжижение газов — это обращение газов в жидкое состояние. Может быть произведено сжатием газа (повышением давления) и одновременным его охлаждением.
Всякий газ может быть переведён в жидкое состояние, но необходимым условием для этого является предварительное охлаждение газа до температуры ниже «критической». Углекислый газ, например, можно сжижать при комнатной температуре, поскольку его критическая температура равна 31,1 0 С. То же, можно сказать и о таких газах, как аммиак и хлор.
Но есть и такие газы, которые при комнатной температуре нельзя перевести в жидкое состояние. К таким газам относятся воздух, водород и гелий, у которых критические температуры значительно ниже комнатной. Для сжижения таких газов их необходимо предварительно охладить до температуры несколько ниже критической, после чего повышением давления газ может быть переведён в жидкое состояние.
Использование сжиженных газов
Сжиженные газы находят широкое применение в технике. Азот идёт для получения аммиака и азотных солей, употребляемых в сельском хозяйстве для удобрения почвы. Аргон, неон и другие инертные газы используются для наполнения электрических ламп накаливания, а также газосветных ламп. Наибольшее применение имеет кислород. В смеси с ацетиленом или водородом он даёт пламя очень высокой температуры, применяемое для резки и сварки металлов. Вдувание кислорода (кислородное дутьё) ускоряет металлургические процессы. Доставляемый из аптек в подушках кислород действует как обезболивающее. Особенно важным является применение жидкого кислорода в качестве окислителя для двигателей космических ракет.
Жидкий водород используется как топливо в космических ракетах. Например, для заправки американской ракеты «Сатурн – 5» требуется 90т жидкого водорода.
Жидкий аммиак нашёл широкое применение в холодильниках – огромных складах, где хранятся скоропортящиеся продукты. Охлаждение, возникающее при испарении сжиженных газов, используют в рефрижераторах при перевозке скоропортящихся продуктов.
Газы, применяемые в промышленности, медицине и т. п., легче перевозить, когда они находятся в сжиженном состоянии, так как при этом в том же объёме заключается большее количество вещества.
Майкл Фараде́й — 22 сентября 1791—25 августа1867
Открыл электромагнитную индукцию, лежащую в основе современного промышленного производства электричества и многих его применений. Создал первую модель электродвигателя . Среди других его открытий— первый трансформатор , химическое действие тока, законы электролиза , действие магнитного поля на свет . Первым предсказал электромагнитные волны. Фарадей ввёл в научный обиход термины ион, катод , анод , электролит , диэлектрик, диамагнетизм, парамагнетизм др.
Фарадей — основоположник учения об электромагнитном поле, которое затем математически оформил и развил Максвелл .
В то время, Фарадей был только скромным лаборантом у Гемфри Дэви.
Гемфри Дэви — английский химик, физик и геолог, один из основателей электрохимии . Известен открытием многих химических элементов, а также покровительством Фарадею на начальном этапе его научной деятельности.
По его поручению он изучал хлоргидрат, кристаллическое соединение, образующееся при взаимодействии при низких температурах воды и хлора. Чтобы проверить, как ведет себя это соединение при нагреве, Фарадей поместил несколько кристаллов гидрата хлора в закрытое колено изогнутой V -образной трубки, после чего другое колено запаял. Далее он нагрел кристаллы, при этом свободное колено оставалось холодным. Кристаллы расплавились и дали зеленовато-желтые пары, пары сконденсировались в холодном колене с образованием маслянистой жидкости, которая оказалась жидким хлором.
1) изогнутая и запаянная трубка
2) вещество или смесь, которые выделяет при нагревании необходимый газ
3) охлаждаемое колено, где собирается сжиженный газ
4) вода или охлаждающая смесь
Фарадей открыл новый метод сжижения газов: не обязательно было получать газы в одном сосуде и закачивать их в другой сосуд, где будет производиться сжижение. Газы удобно переводить в жидкое состояние в том же сосуде, где они образуются. Таким способом на протяжении 1823 года Фарадею удалось перевести в жидкое состояние сероводород, сернистый газ, углекислый газ, закись азота.
Выводы
Любой газ можно превратить в жидкость простым сжатием
Сжижение газов— сложный процесс, который включает в себя множество сжатий
Сжижение может быть произведено сжатием газа и одновременным его охлаждением
Сжиженные газы находят широкое применение
Сжиженные газы применяются не только в технике, медицине и сельском хозяйстве, но и в науке.
Источник
25. Методы получения низких температур и сжижения газов
В технике применяют 3 основных метода для получения низких температур: 1) испарение жидкостей; 2) эффект Джоуля-Томсона; 3) адиабатическое расширение газа. Иногда применяются различные химические охлаждающие смеси.
Газ может быть превращен в жидкое состояние только при температуре ниже критической ТК. Сжижение газов, имеющих достаточно высокую температуру ТК, обычно производят, сжимая газ компрессором, а затем охлаждают его ниже температуры кипения. Таким способом получают углекислоту (ТК = 304 К), хлор (ТК = 417 К), аммиак (ТК = 405 К). Для получения жидкого кислорода (ТК = 154 К), азота (ТК = 126 К), водорода (ТК = 33 К), гелия (ТК = 5 К) используют специальные установки.
По принципуиспарения жидкости (фреона или хладона) работает компрессионный холодильник (рис. 70). Когда включается компрессор К, в трубках морозильной камеры давление быстро падает. Это заставляет фреон интенсивно испаряться (кипеть при пониженном давлении). Необходимая для испарения энергия берётся из окружающей среды – морозильной камеры, которая охлаждается. После компрессора сжатый горячий фреон поступает в конденсатор, где он охлаждается и конденсируется, переходя в жидкое состояние. Охлажденный фреон поступает по капиллярной трубке в морозильную камеру, и процесс повторяется.
Комната не может охладиться при открытой двери холодильника, так как тепло, взятое из морозильной камеры, выделяется на задней стенке холодильника. Поэтому надо обеспечить хорошую вентиляцию задней стенки холодильника, иначе мотор-компрессор перегреется и выйдет из строя.
Первые машины для технического сжижения воздуха предложили независимо друг от друга в 1895 г. Хемпсон (Англия) и Линде (Германия) на эффекте Джоуля-Томсона.
Упрощенная схема машины Линде показана на рис. 71. Во всех машинах для сжижения газов используется метод противоточного теплообмена. Давление при дросселировании падает с 200 до 1 атм с понижением температуры на 50 С. Охлажденный воздух отводится к компрессору, по пути охлаждая новую порцию воздуха, идущего к дросселю. Через несколько циклов часть воздуха начинает конденсироваться.
Приадиабатическом расширении идеальные и реальные газы охлаждаются. Причиной охлаждения является то, что все молекулы, сталкивающиеся с движущимся поршнем, передают ему часть своей кинетической энергии и отражаются от него с меньшей, чем до удара, скоростью (рис. 72). Это приводит к уменьшению средней скорости молекул, а следовательно, и к уменьшению температуры. Устройство, в котором газ охлаждается, совершая внешнюю работу при адиабатическом расширении, называется детандером. Французскому инженеру Клоду удалось в 1902 г. с помощью такого метода получить жидкий воздух. Схема его установки аналогична машине Линде, но вместо дросселя использовался детандер – цилиндр с поршнем. Давление после компрессора составляло 40 атм, а после расширения – около 1 атм. Более совершенным является турбодетандер П.Л. Капицы, в котором поршень заменен турбиной: газ, сжатый всего до 5–7 атм, вращает турбину и, совершая работу, сильно охлаждается, расширяясь до давления 1,3 атм.
При прочих равных условиях эффект адиабатического охлаждения сильнее, чем при дросселировании. В промышленных установках для повышения эффективности комбинируют различные методы, разделяют газовые потоки, используют предварительное охлаждение.
Для получения сверхнизких температур (0,001 К) применяют метод магнитного охлаждения (адиабатического размагничивания). При этом используются парамагнитные соли (хромокалиевые или железоаммониевые квасцы), которые предварительно охлаждают до 0,7 К кипящим при пониженном давлении гелием. Затем соль намагничивают. Молекулы парамагнетика ориентируются в магнитном поле, возникает упорядоченность и энтропия уменьшается. Затем устраняют тепловой контакт гелия и парамагнетика (создавая условие адиабатичности) и выключают магнитное поле. Ионы ориентируются беспорядочно, что дает увеличение энтропии ионов. Но так как в адиабатическом процессе общая энтропия не должна изменяться, то должна уменьшиться энтропия, связанная с тепловыми колебаниями кристаллической решетки. Это приводит к уменьшению температуры.
Сжиженные газы быстро испаряются. Для их сохранения применяются сосуды Дьюара (термосы). Это стеклянные или металлические сосуды с двойными (зеркальными) стенками, из промежутка между которыми выкачан воздух. Они обеспечивают почти адиабатическую оболочку.
ТРИЗ-задание 38. Детандеры
Поршневые детандеры – машины периодического действия, в которых потенциальная энергия сжатого газа преобразуется во внешнюю работу при расширении отдельных порций газа, перемещающих поршень. Турбодетандеры – лопаточные машины непрерывного действия. Какие два изобретательских приёма позволяют перейти от поршневого детандера к идее турбодетандера?
ТРИЗ-задание 39. Детандер-генератор
Изучите в ТРИЗ раздел овещественно-полевых ресурсах (ВПР). Затем в сети Интернет найдите информацию о детандере—генераторе и ответьте на вопрос: какие виды ресурсов он использует?
Источник
Сжиженный природный газ (СПГ), технологии сжижения
Это природный газ, искусственно сжиженный путем охлаждения до −160 °C
Перевод 1 тонны СПГ в кубометры (м 3 ).
1 тонна СПГ — это примерно 1,38 тыс м 3 природного газа после регазификации.
Примерно — потому что плотность газа и компонентный на разных месторождения разная.
Формулу Менделеева — Клайперона никто не отменял.
Кроме метана в состав природного газа могут входить: этан, пропан, бутан и некоторые другие вещества.
Плотность газа изменяется в интервале 0,68 — 0,85 кг/м³, но зависит не только от состава, но и от давления и температуры в месте расчета плотности газа.
Стандартные условия для температуры и давления – это установленные стандартом физические условия, с которыми соотносят свойства веществ, зависящие от этих условий.
Национальный институт стандартов и технологий (NIST) устанавливает температуру 20 °C (293,15 K) и абсолютное давление 1 атм (101.325 кПа), и этот стандарт называют нормальной температурой и давлением (NTP).
Плотность компонентов газа сильно различается:
- Метан — 0,668 кг/м³,
- Этан — 1,263 кг/м³,
- Пропан — 1,872 кг/м³.
Поэтому, в зависимости от компонентного состава изменяется и количество м 3 газа при переводе из тонн.
Процесс сжижения идет ступенями, на каждой из которых газ сжимается в 5-12 раз, затем охлаждается и передается на следующую ступень.
Ныне применяются 2 техпроцесса:
- конденсация при постоянном давлении (компримирование), что довольно неэффективно из-за энергоемкости,
- теплообменные процессы: рефрижераторный — с использованием охладителя и турбодетандерный/дросселирование с получением необходимой температуры при резком расширении газа.
В процессах сжижения газа важна эффективность теплообменного оборудования и теплоизоляционных материалов.
При теплообмене в криогенной области увеличение разности температурного перепада между потоками всего на 0,5ºС может привести к дополнительному расходу мощности в интервале 2 — 5 кВт на сжатие каждых 100 тыс м 3 газа.
Недостаток технологии дросселирования — низкий коэффициент ожижения — до 4%, что предполагает многократную перегонку.
Применение компрессорно-детандерной схемы позволяет повысить эффективность охлаждения газа до 14 % за счет совершения работы на лопатках турбины.
Термодинамические схемы позволяют достичь 100% эффективности сжижения природного газа:
- каскадный цикл с последовательным использованием в качестве хладагентов пропана, этилена и метана путем последовательного снижения их температуры кипения,
- цикл с двойным хладагентом — смесью этана и метана,
- расширительные циклы сжижения.
Известно 7 различных технологий и методы сжижения природного газа:
- для производства больших объемов СПГ лидируют техпроцессы AP-SMR™, AP-C3MR™ и AP-X™ с долей рынка 82% компании Air Products,
- технология Optimized Cascade, разработанная ConocoPhillips,
- использование компактных GTL-установок, предназначенных для внутреннего использования на промышленных предприятиях,
- локальные установки производства СПГ могут найти широкое применение для производства газомоторного топлива (ГМТ),
- использование морских судов с установкой сжижения природного газа (FLNG), которые открывают доступ к газовым месторождениям, недоступным для объектов газопроводной инфраструктуры,
- использование морских плавающих платформ СПГ, к примеру, которая строится компанией Shell в 25 км от западного берега Австралии.
Процесс сжижения газа
Оборудование СПГ-завода
- установка предварительной очистки и сжижения газа,
- технологические линии производства СПГ,
- резервуары для хранения, в тч специальные криоцистерны, устроенные по принципу сосуда Дюара,
- для загрузки на танкеры — газовозы,
- для обеспечения завода электроэнергией и водой для охлаждения.
Существует технология, позволяющая сэкономить на сжижении до 50% энергии, с использованием энергии, теряемой на газораспределительных станциях (ГРС) при дросселировании природного газа от давления магистрального трубопровода (4-6 МПа) до давления потребителя (0,3-1,2 МПа):
- используется как собственно потенциальная энергия сжатого газа, так и естественное охлаждение газа при снижении давления.
- дополнительно экономится энергия, необходимая для подогрева газа перед подачей к потребителю.
Транспортировка СПГ— это процесс, включающий в себя несколько этапов:
- морской переход танкера — газовоза,
- автодоставка с использованием спецавтотранспорта,
- ж/д доставка с использованием вагонов-цистерн,
- регазификация СПГ до газообразного состояния.
Регазифицированный СПГ транспортируется конечным потребителям по газопроводам.
Основные производители СПГ по данным 2009 г:
Катар -49,4 млрд м³, Малайзия — 29,5 млрд м³; Индонезия-26,0 млрд м³; Австралия — 24,2 млрд м³; Алжир — 20,9 млрд м³; Тринидад и Тобаго -19,7 млрд м³.
Основные импортеры СПГ в 2009 г: Япония — 85,9 млрд м³; Республика Корея -34,3 млрд м³; Испания- 27,0 млрд м³; Франция- 13,1 млрд м³; США — 12,8 млрд м³; Индия-12,6 млрд м³.
Производство СПГ в России
На 2021 г в РФ действует 4 СПГ-завода.
СПГ-завод проекта Сахалин-2 запущен в 2009 г, контрольный пакет принадлежит Газпрому, у Shell доля участия 27,5%, японских Mitsui и Mitsubishi — 12,5% и 10% .
По итогам 2015 г производство составило 10,8 млн т/год, превысив проектную мощность на 1,2 млн т/год.
Однако из-за падения цен на мировом рынке доходы от экспорта СПГ в долларовом исчислении сократились по сравнению с 2014 г на 13,3% до 4,5 млрд долл США/год.
2 м крупным игроком на рынке российского СПГ становится компания НОВАТЭК, которая в январе 2018 г ввела в эксплуатацию СПГ — завод на проекте Ямал-СПГ.
Новатэк-Юрхаровнефтегаз (дочернее предприятие Новатэка ) выиграл аукцион на право пользования Няхартинским участком недр в ЯНАО.
Няхартинский участок недр нужен компании для развития проекта Арктик СПГ. Это 2 й проект Новатэка, ориентированный на экспорт СПГ.
В США введены в эксплуатацию 5 терминалов по экспорту СПГ общей мощностью 57,8 млн т/год.
На европейском газовом рынке началось жесткое противостояние американского СПГ и российского сетевого газа.
Источник