Способы снижения реактивных нагрузок потребителей не требующие компенсации реактивной мощности

Проблема реактивной мощности и ее решение

Сегодня компании из различных секторов экономики сталкиваются с проблемой роста реактивной мощности в электрических сетях. Использование специальных устройств для компенсации или сглаживания этих эффектов позволяет не только продлить срок службы дорогостоящей техники, но и снизить энергопотребление.

ПРОБЛЕМА РЕАКТИВНОЙ МОЩНОСТИ И ЕЕ РЕШЕНИЕ
экономия электроэнергии за счет уменьшения потерь в силовых линиях и трансформаторах до 15 %

Сегодня компании из различных секторов экономики сталкиваются с проблемой роста реактивной мощности в электрических сетях. Использование специальных устройств для компенсации или сглаживания этих эффектов позволяет не только продлить срок службы дорогостоящей техники, но и снизить энергопотребление. Увеличение числа разнородных нагрузок в современных электросетях приводит к росту реактивной мощности, а также увеличению нелинейных искажений. Помехи способствуют увеличению затрат на электроснабжение, а также могут причинить вред дорогостоящей технике, сокращая срок ее службы. Именно поэтому такие учреждения и организации, как заводы «Николь Пак» в Учалы, TAKEDA по производству лекарств в Ярославле и железнодорожный вокзал Уфы, используют системы компенсации реактивной мощности стоимостью несколько миллионов рублей.

Причина возникновения реактивной мощности

Простые потребители электроэнергии, такие как нагреватели или лампы накаливания, не создают искажений и не влияют на качество электропитания. Но чем чаще в сетях встречаются инверторы, электрические двигатели, частотные преобразователи, импульсные источники питания, ИБП, люминесцентные и светодиодные лампы, тем сильнее увеличивается потреб-ление реактивной мощности, растут токи в проводниках, полезная энергия уходит в нагрев и вибрации.

По статистике Legrand, из-за наличия гармонических помех в сети и большого количества реактивной составляющей тока в электросетях теряется до 40 % полезной мощности. А поскольку сегодня как на промышленных объектах, так и в обычных офисах и жилых комплексах появляется все больше разнообразных устройств, с проблемой реактивных мощностей приходится бороться практически во всех сферах. Многие организации устанавливают мощные ИБП, обеспечивая резервирование питания для критически важных нагрузок, однако низкое качество электроэнергии может нанести вред даже хорошо защищенному оборудованию. Поэтому критически важно применять целый комплекс необходимых мер, включающий в себя компенсацию реактивных мощностей и сглаживание гармоник высшего порядка.
Устройства компенсации реактивной мощности

Самый экологичный и эффективный способ борьбы с реактивной мощностью – это использование устройств компенсации реактивной мощности (УКРМ). Они могут представлять собой автоматические конденсаторные установки, которые уравновешивают реактивную нагрузку, сводя ее к минимуму. Практика показывает, что установка УКРМ позволяет снизить потребление реактивной мощности до 90 %. Это становится возможным за счет уменьшения потерь в силовых кабелях и трансформаторах.

Установка постоянно измеряет расхождение фаз тока и напряжения и меняет свою емкость в зависимости от колебаний со стороны потребителей. Например, для подключения мощных устройств в линейке Legrand имеются конденсаторные установки и модули ALPIMATIC с электромеханическими контакторами. А для более динамических сред с большим количеством коммутаций и сложными переходными процессами были разработаны конденсаторные установки ALPISTATIC с полупроводниковыми контакторами.

В каждый момент времени УКРМ создает противовес реактивной нагрузке и может довести полезность мощности до 97 %. Благодаря этому работа УКРМ способствует уменьшению количества фактически потребленной энергии в кВА, а также гарантирует повышение стабильности уровня напряжения для потребителей. За счет этого снижаются затраты на электроэнергию, а также продлевается срок безаварийной работы самой разной техники.

Активные фильтры

Однако существуют такие ситуации, когда высокочастотное оборудование в электросети создает гармонические помехи. Их прямая компенсация не приведет к значительной экономии, однако наличие гармонических искажений в сети способно нанести серьезный вред станкам с ЧПУ, двигателям и другому дорогостоящему оборудованию.
Для борьбы с искажениями используются активные фильтры. Подобное устройство не просто сглаживает, но непрерывно генерирует компенсационный ток в противофазе к гармоникам искажений. При времени реагирования менее 300 мкс (например, такой параметр обеспечивает фильтр ECOsineActive) система оперативно устраняет гармонические искажения и восстанавливает синусоидальную форму тока.

За счет возможности компенсации больших всплесков (номинальный ток – до 300 А) и защите от вредоносной среды на уровне вплоть до IP54 современные активные фильтры успешно применяются в промышленности. Так, на проекте для завода TAKEDA в Ярославле в дополнение к системам УКРМ также был установлен активный фильтр гармоник APFSC4P400V120A, который обеспечивает расширенные возможности для защиты оборудования.

Активный фильтр может повышать качество электропитания, нейтрализуя гармоники вплоть до 50-го порядка, а также помогает компенсировать реактивную мощность, обеспечивая баланс токов в системе, многократно снижая уровень нагрева и вибраций. Благодаря этому износ оборудования сводится к минимуму и соблюдаются лимиты энергопотребления, ставшие характерными для многих поставщиков электроэнергии.

Оценка энергоэффективности

Перед установкой таких решений, как УКРМ и активные фильтры, обязательно проводится оценка состояния электросетей. Это особенно актуально для энергоемких отраслей, где затраты на энергию превышают 40 % (например, в нефтепереработке этот показатель достигает 54,7 %).

Чтобы провести точную оценку целесообразности применения оборудования для компенсации реактивной мощности, представительства Legrand в регионах России используют анализаторы параметров электропитания HTL 103 от ChauvinArnoux. Это одни из наиболее совершенных, компактных и удобных устройств в своем классе, которые позволяют быстро оценить состояние электросетей и возможные выгоды от использования УКРМ и активных фильтров.
Каждый клиент может заказать обследование, по итогам которого в специальной программе будут рассчитаны потери из-за возникновения реактивной мощности, а также предложены конкретные модели оборудования, которые позволят справиться с ними с максимальной эффективностью. Для большинства задач подходят установки компенсации реактивной мощности усиленного класса, а для самых тяжелых нагрузок подходит категория УКРМ сверхусиленного класса, комплексный проект по установке которых можно получить сразу после обследования.
Ежегодно спрос на энергоаудит в России растет. Так, например, в 2018 году наши специалисты проводили анализ энергопотребления на 70 объектах. По итогам принятых мер более 100 предприятий за эти два года добились снижения энергопотребления, а на 7 объектах срококупаемости установленных УКРМ и активных фильтров составил менее 12 месяцев.

Читайте также:  Ацц пакетики способ применения

Заключение

В среднем срок окупаемости инвестиций в УКРМ и активные фильтры составляет от 1 до 4 лет и достигает минимальных значений в энергоемкой промышленности. Но даже офисные центры уже через несколько лет начинают экономить на одних только счетах от энергетических компаний, не говоря уже о снижении затрат на обслуживание самой разнообразной техники, которая дольше работает без поломок благодаря наличию качественного электропитания.

Вложение в создание систем УКРМ и установку активных фильтров оправдывает себя как капитальное вложение, так как оно приводит к снижению операционных затрат уже с первых дней эксплуатации систем. А наличие на рынке полностью локализованных решений, все компоненты которых производятся в России и постоянно доступны для заказчиков, помогает предприятиям гарантировать защиту собственных инвестиций, обеспечивая в долгосрочной перспективе дополнительную экономию.

Поделиться статьей в социальных сетях:

Источник

Способы снижения потребления реактивной мощности без компенсирующих устройств

Мероприятия по снижению потребления реактивной мощности электроприёмниками (асинхронные двигатели, трансформаторы, вентильные преобразователи) экономически более выгодны, т.к. не требуют дополнительных капитальных затрат которые обычно сопутствуют внедрению компенсирующих установок.

Методы снижения потребления реактивной мощности электроприёмниками:

1) замена малозагруженных асинхронных двигателей двигателями меньшей мощности;

2) понижение напряжения у двигателей, систематически работающих с малой загрузкой;

3) ограничениеXX асинхронных двигателей;

4) замена или отключение в период малых нагрузок трансформаторов;

5) применение наиболее целесообразной силовой схемы и системы управления вентильного преобразователя.

1. Замена малозагруженных двигателей двигателями меньшей мощности. Потребление реактивной мощности асинхронными двигателями зависит от коэффициента загрузки и его технических характеристик. При номинальной загрузке и номинальном напряжении асинхронный двигатель (АД) потребляет реактивную мощность

(5.4)

Реактивную мощность, потребляемую АД из сети при XX, находят из выражения

(5.5)

Для двигателей с номинальным коэффициентом мощности реактивная мощностьXX составляет около 60% реактивной мощности при номинальной загрузке двигателя. Для АД с она достигает 70%.

Увеличение потребления реактивной мощности при полной загрузке двигателя по сравнению с потреблением приXX определяется разностью выражений (5.4) и (5.5), т.е.

(5.6)

При загрузках асинхронного двигателя, меньших номинальной, прирост потребления реактивной мощности по сравнению сXXпропорционален квадрату коэффициента загрузки двигателя

(5.7)

где — коэффициент загрузки двигателя.

Коэффициент мощности АД уменьшается при уменьшении его загрузки, что следует из выражения:

(5.8)

Например, если для какого-то конкретного двигателя при 100%-ной загрузке , то при 50%-ной он равен 0,65, а при 30%-ной 0,51.

Следовательно, замена систематически малозагруженных двигателей двигателями меньшей мощности способствует повышению мощности промышленных электроустановок.

Исследования показали, что если средняя загрузка двигателя составляет менее 45% номинального значения его мощности, то замена двигателя менее мощным всегда целесообразна и проверка расчётами не требуется. При загрузке двигателя более 70% номинальной мощности можно считать, что замена его в общем случае нецелесообразна. При загрузке двигателей 45-70 % целесообразность замены их должна быть подтверждена достаточным уменьшением суммарных потерь активной мощности в электрической системе и двигателе, которые рассчитываются по формуле:

(5.9)

где — коэффициент изменения потерь (задаётся предприятию энергосистемой), ; — прирост потерь активной мощности в двигателе при загрузке 100%, кВт; — расчётный коэффициент, зависящий от конструкции двигателя; — потери активной мощности АД при ХХ, кВт.

2. Понижение напряжения у двигателей, систематически работающих с малой загрузкой. При невозможности замены малозагруженного асинхронного двигателя следует проверить целесообразность снижения напряжения на его зажимах. Снижение напряжения на выводах АД до определённого минимально допустимого значения приводит к уменьшению потребления реактивной мощности (за счёт уменьшения тока намагничивания) и тем самым к увеличению коэффициента мощности. При этом одновременно уменьшаются потери активной мощности и, следовательно, увеличивается КПД двигателя. Применяют следующие способы снижения напряжения у малозагруженных АД:

а) Переключение статорной обмотки с треугольника на звезду. Рекомендуется для двигателей напряжением до 1кВ, систематически загруженных менее чем на 40% номинальной мощности. Однако, из-за снижения вращающего момента в 3 раза необходимо производить проверку по предельному коэффициенту загрузки двигателя, определяемому условием устойчивости.

(5.10)

где — кратность максимального вращающего момента по отношению к номинальному.

б) Секционирование статорных обмоток. Рекомендуется для двигателей с параллельными ветвями в статорной обмотке.

в) Понижение напряжения в сетях промышленных предприятий путем переключения ответвлений понижающих трансформаторов. Используется для снижения рабочего напряжения АД и направлено на повышение его коэффициента мощности. Однако если данный трансформатор питает одновременно другие приёмники, не допускающие снижения напряжения на их зажимах, то данный способ не используется.

3. Ограничение холостого хода работы асинхронных двигателей. Работа большинства АД характерна тем, что в перерывах между нагрузками они вращаются на XX. Если промежутки работы наXX достаточно велики, то целесообразно на это время отключать двигатель от сети. Применение ограничителей XX приводит к экономии электроэнергии, когда промежутки работы на XX превышают 10с. Когда промежутки XX меньше 10с, вопрос об эффективности ограничителей решается на основании технико-экономических расчётов.

4. Замена или отключение в период малых нагрузок трансформаторов. Повышения коэффициента мощности промышленного предприятия достигают за счёт рационализации работы трансформаторов, которую проводят путём их замены и перегруппировки (в случае недогруженности трансформаторов, см. раздел «выбор трансформаторов»), а также отключения некоторых трансформаторов в часы минимальных нагрузок.

Читайте также:  Фгдс очищение кишечника каким способом сколько раз

5. Применение наиболее целесообразной силовой схемы в системе управления вентильного преобразователя. Вентильный преобразователь постоянного тока является потребителем реактивной мощности, так как основная гармоника тока отстает от напряжения. Угол сдвига , между основными гармониками напряжения и тока определяется в основном глубиной регулирования выпрямленного напряжения. Считают, что , где — среднее значение выпрямленного напряжения; — выпрямленное напряжение идеального XX, определяемое силовой схемой преобразователя.

Коэффициент мощности преобразователя ( ) определяют по основной гармонике

(5.11)

где — коэффициент искажения тока; — основная гармоника переменного тока преобразователя.

Реактивную мощность на шинах преобразователя со стороны системы переменного тока определяют по уравнениям:

(5.12)

где — среднее значение выпрямленного тока; — расчётный коэффициент, учитывающий силовую схему преобразователя (например, ); — фазное напряжение на входе преобразователя.

Реактивную мощность, потребляемую преобразователем, определяют соотношением между напряжением на стороне переменного тока и средним выпрямленным напряжением (степенью зарегулирования).

Рис. 3. Зависимость относительной реактивной мощности от степени регулирования для различных схем ВП и способов управления:

1 – трехфазный мостовой преобразователь с симметричным управлением; 2 – симметрично управляемый преобразователь с нулевыми вентилями; 3 – поочерёдное управление последовательно соединенными преобразователями; 4 –- несимметричное управление параллельно соединёнными преобразователями

К уменьшению реактивной мощности, потребляемой преобразователем, приводят следующие меры:

1) применение более сложной силовой схемы (включение нулевого вентиля, регулирование напряжения на стороне переменного тока);

2) применение усложненных законов управления (поочередное управление последовательно соединенными преобразователями (см. рис. 2), несимметричное управление);

3) применение искусственной коммутации (одноступенчатой, двухступенчатой).

Перспективной является схема последовательного соединения мостов с поочерёдным управлением (см. рис. 3). Такое исполнение особенно целесообразно для двухъякорных двигателей, включаемых по восьмеричной схеме.

Рис. 4. Схема последовательного соединения преобразователей с поочерёдным управлением.

Так как изменение выпрямленного напряжения осуществляют регулированием одного преобразователя, то потребление реактивной мощности по сравнению с обычными схемами снижается на 30-40%.

В современной технике преобразования электроэнергии, для повышения коэффициента мощности преобразователей, используют схемы с искусственной коммутацией. Основным элементом в устройстве искусственной коммутации служит батарея конденсаторов (специальный трансформатор либо преобразователь частоты). За счёт запасённой электромагнитной энергии конденсаторов, вводимой в контур коммутации, происходит принудительный сдвиг тока в сторону опережения, и преобразователи могут работать, не потребляя реактивной мощности с или генерируя её — в качестве компенсатора.

Компенсирующие устройства

Для компенсации реактивной мощности, потребляемой электроустановками промышленного предприятия, используют генераторы электростанций и синхронные двигатели, а также дополнительно устанавливаемые компенсирующие устройства — синхронные компенсаторы, батареи конденсаторов и специальные статические источники реактивной мощности.

1. Синхронные компенсаторы являются синхронными двигателями облегченной конструкции без нагрузки на валу. Работают как в режиме генерации реактивной мощности, так и её потребления. Изменение генерируемой или потребляемой реактивной мощности компенсатора осуществляют регулированием его возбуждения.

Достоинствами синхронных компенсаторов как источников реактивной мощности являются: положительный регулирующий эффект, который заключается в том, что при уменьшении напряжения в сети генерируемая мощность компенсатора увеличивается; возможность плавного и автоматического регулирования генерируемой реактивной мощности; достаточная термическая и электродинамическая стойкость обмоток компенсаторов во время КЗ; возможность восстановления поврежденных синхронных компенсаторов путем проведения ремонтных работ.

К недостаткам синхронных компенсаторов следует отнести удорожание и усложнение эксплуатации (сравнивая, например, с конденсаторными батареями) и значительный шум во время работы. Потери активной мощности в синхронных компенсаторах при их полной загрузке довольно значительны и в зависимости от номинальной мощности находятся в пределах от 0,011 до 0,03 кВт/квар. Удельная стоимость синхронных компенсаторов и потери активной мощности значительно увеличиваются при уменьшении их номинальной мощности; например, у синхронных компенсаторов мощностью 7,5 Мвар удельная стоимость, включая все расходы на установку, составляет 12,5, а у компенсаторов 75 Мвар для наружной установки 7,5 руб/квар.

При оценке технико-экономических показателей синхронных компенсаторов учитывают, что в их комплект входят релейная защита, АРВ, системы пуска и управления, устройства противоаварийной автоматики, а также соответствующие коммутационные аппараты. Наличие на синхронных компенсаторах вращающихся элементов, контактных соединений (реостат, коллектор и контактные кольца) требует затрат на их текущий ремонт и обслуживание. Стоимость этих устройств практически не зависит от номинальной мощности синхронного компенсатора.

Решение о принятии варианта компенсации с применением синхронного компенсатора следует сопоставить с вариантом автоматически регулируемых батарей конденсаторов. В отдельных случаях применение синхронных компенсаторов может оказаться целесообразным на крупных подстанциях районного значения при больших мощностях необходимых компенсирующих устройств.

Затраты на генерацию реактивной мощности синхронным компенсатором

(5.13)

где Q — генерируемая реактивная мощность, Мвар; — удельные затраты на 1 Мвар генерируемой мощности, руб/Мвар; — удельные затраты на 1 Мвар 2 генерируемой мощности, руб/Мвар 2 ; — общие отчисления от капиталовложений, определяемые суммой нормативного коэффициента экономической эффективности , коэффициента амортизационных отчислений и расходов на обслуживание ; — стоимость установки компенсатора, руб; — удельная стоимость потерьXX и КЗ соответственно, руб/кВт; — номинальные потериXXи КЗ, кВт; — номинальная мощность компенсатора, Мвар.

Так как у синхронных компенсаторов небольшой мощности высокая удельная стоимость и большие потери активной мощности, то их целесообразно применять для больших мощностей (на крупных подстанциях).

2. Синхронные двигатели. Коэффициент мощности СД на опережающим токе составляет 0,9 и являются эффективным средством компенсации реактивной мощности. Наибольший верхний предел возбуждения синхронного двигателя определяется допустимой температурой обмотки ротора с выдержкой, достаточной для форсировки возбуждения при кратковременных снижениях напряжения. Максимальную генерируемую реактивную мощность определяют по выражению

(5.14)

где — коэффициент перегрузки по реактивной мощности.

Читайте также:  Как эффективно восстановить печень медики назвали простые способы

Величина зависит от загрузки двигателя активной мощностью , подводимого напряжения U и технических данных двигателя. Изменение коэффициента загрузки двигателя оказывает особенно большое влияние на величину в диапазоне . При дальнейшем снижении коэффициента загрузки эффект указанного влияния снижается.

Основным критерием для выбора рационального режима возбуждения синхронного двигателя являются дополнительные потери

(5.15)

где — расчётные величины, зависящие от параметров двигателя, кВт.

3. Конденсаторы – специальные ёмкости, предназначенные для выработки реактивной мощности. По своему действию они эквивалентны перевозбужденному синхронному компенсатору и могут работать лишь как генераторы реактивной мощности.

Конденсаторы изготовляют на номинальные напряжения 660 В и ниже, мощностью 12,5-50 квар в трёх- и однофазном исполнениях, а на 1050 В и выше мощностью 25-100 квар — в однофазном исполнении. Из таких элементов собирают батареи конденсаторов требуемой мощности. Схема батареи конденсаторов определяется техническими данными конденсаторов и режимом работы в системе электроснабжения.

В настоящее время выпускаются комплектные конденсаторные установки, регулируемые на напряжение 380 В мощностью 150-750 квар (одна-пять секций по 150 квар) и нерегулируемые на напряжение 6-10 кВ мощностью 300-1125 квар с шагом 150 квар.

Конденсаторы по сравнению с другими источниками реактивной мощности обладают малыми потерями активной мощности (0,0025-0,005 кВт/квар), простотой эксплуатации (ввиду отсутствия вращающихся и трущихся частей), простотой производства монтажных работ (малой массой, отсутствием фундаментов), возможностью использования для установки конденсаторов любого сухого помещения. К недостаткам конденсаторов относят чувствительность к искажениям питающего напряжения; недостаточную прочность, особенно при КЗ и перенапряжениях; зависимость генерируемой реактивной мощности от напряжения

(5.16)

где — относительное напряжение сети в месте присоединения; — отношение номинального напряжения конденсаторов к номинальному напряжению сети.

Затраты на генерацию реактивной мощности батареей конденсаторов, руб.,

(5.17)

где Q — генерируемая реактивная мощность, Мвар; — удельные затраты на 1 Мвар генерируемой мощности, руб/Мвар; — постоянная составляющая затрат, не зависящая от генерируемой мощности, руб.; — удельная стоимость батареи конденсаторов, руб/Мвар; — удельная стоимость потерь, руб/кВт; — удельные потери в конденсаторах, кВт/Мвар; — стоимость вводного и регулирующего устройств, руб.

Установки конденсаторов бывают индивидуальные, групповые и централизованные. Индивидуальные установки в основном применяют на напряжения до 660 В. В этих случаях конденсаторы присоединяют наглухо к зажимам приемника. Такой вид установки компенсирующих устройств обладает существенным недостатком — плохим использованием конденсаторов, так как с отключением приёмника отключается и компенсирующая установка. При групповой установке конденсаторы присоединяют к распределительным пунктам сети. При этом использование установленной мощности конденсаторов несколько увеличивается. При централизованной установке батареи конденсаторов присоединяют на стороне высшего напряжения трансформаторной подстанции промышленного предприятия. Использование установленной мощности конденсаторов в этом случае получается наиболее высоким.

При отключении конденсаторов необходимо, чтобы запасенная в них энергия разряжалась автоматически на постоянно включенное активное сопротивление. Значение сопротивления должно быть таким, чтобы при отключении конденсаторов не возникало перенапряжение на их зажимах.

4. Статические компенсирующие устройства. Набросы реактивной мощности, сопровождающие работу мощных приёмников с резко-переменной нагрузкой, вызывают значительные колебания питающего напряжения. Кроме того, эти приемники, будучи, как правило, нелинейными элементами в системе электроснабжения, вызывают дополнительные искажения формы токов и напряжений. Поэтому к компенсирующим устройствам предъявляют такие требования, как высокое быстродействие изменения реактивной мощности, достаточный диапазон регулирования реактивной мощности, возможность регулирования и потребления реактивной мощности, минимальные искажения питающего напряжения.

Статические источники реактивной мощности представляют собой сочетание конденсаторных батарей с регулирующим звеном (см. рис. 5).

Рис. 5. Конденсаторная батарея с тиристорными ключами:

ТВ – тиристорные выключатели; – индуктивность; – разрядное сопротивление; КБ – конденсаторная батарея

На рис. 6 приведена схема управляемого статического компенсатора (УСК) на основе управляемого подмагничиванием реактора. Суммарная реактивная мощность УСК рассчитывается по выражению:

. (5.18)

Реактивная мощность реактора является функцией токаподмагничивания. Компенсатор может либо генерировать ( ), либо потреблять её ( ). Применение таких УСК оправдано только в сетях с резкопеременной нагрузкой, когда сочетаются свойства УСК компенсировать реактивную мощность и снижать колебания напряжения. Вместо управляемого подмагничиванием реактора в УСК может использоваться неуправляемый, но в сочетании с тиристорным блоком управления (рис. 7)

В отличие от рассмотренных, где источником реактивной мощности являются конденсаторы, имеются компенсаторы, в которых используются индуктивные накопители энергии. Подключая такие накопители к сети через тиристорные блоки с искусственной коммутацией тиристоров, удается так выбирать угол коммутации , что ток будет либо отстающим, либо опережающим по отношению к напряжению, иными словами, будет иметь место режим генерации или режим потребления реактивной мощности. На рис. 8 приведена схема такого компенсатора, который состоит из двух блоков: выпрямителя и инвертора.

Возможны следующие режимы: оба преобразователя потребляют реактивную мощность (рис. 8, б) и один генерирует реактивную мощность (рис. 8, в) и оба генерируют реактивную мощность (рис. 8, г) .

Рис. 6. Однолинейная схема статического компенсатора на основе управляемого подмагничиванием реактора (УР)

Рис. 7. Однолинейная схема статического компенсатора с реактором (Р), управляемым тиристорным блоком (ТБ)

Рис. 8. Источник реактивной мощности с индуктивным накопителем:

а – однолинейная схема; б–г – векторные диаграммы

Основные достоинства этих устройств – высокое быстродействие, надежность работы и малые потери активной мощности.

Недостатком является необходимость установки дополнительного регулируемого дросселя.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Источник

Оцените статью
Разные способы