Снижение горючести материалов)
При характеристике негорючих материалов и материалов с пониженной горючестью пользуются следующими основными терминами:
воспламеняемость — это способность материала загораться при определенных условиях (концентрации окислителя, температуре и давлении окружающей среды). Она характеризуется температурой воспламенения, кислородным индексом и временем зажигания материала.
горючесть — свойство материала поддерживать горение при определенных условиях;
огнестойкость материала — характеристика способности материала сохранять свои свойства в условиях пожара в течение продолжительного времени;
пожароопасность означает степень риска для жизни людей и животных. Под этим термином подразумевают горючесть материала, вероятность его механического разрушения под действием огня и механических нагрузок и выделение токсичных газов и дымов из материала в условиях пожара. В свою очередь материалы подразделяются на негорючие, трудносгораемые, трудновоспламеняемые и сгораемые.
Существует несколько способов снижения горючести полимерных материалов, которые можно условно разделить на четыре группы:
· Огнезащита с использованием устойчивых к пламени материалов (огнезащитных покрытий).
· Введение замедлителей горения или антипирирующих составов.
· Модификация полимерных материалов.
Наряду с первым и вторым способами используют пропитку полимерных материалов огнегасящими составами, способными образовывать на поверхности материала защитный слой. В некоторых случаях эти составы учитывают при составлении рецептур полимерных материалов.
Огнезащита устойчивыми к пламени материалами подразумевает покрытие плитками, листами из негорючих или трудносгораемых материалов изделий из горючих материалов. В качестве огнезащитных покрытий могут применяться огнезащитные краски, лаки, вспенивающие покрытия. Преимущества огнезащитных покрытий — в простоте изготовления и сравнительно небольшой стоимости работ. Основной недостаток этого способа заключается в том, что при повышении температуры для большинства покрытий характерно отслаивание от основного горючего материала. При этом возрастает вероятность загорания основного материала. Для вспенивающихся покрытий, на которых при воздействии огня или тепла образуется быстрорастущая негорючая пена с мелкими закрытыми порами, снижение адгезии покрытия к материалу менее вероятно из — за резкого уменьшения теплопередачи через покрытие.
Введение наполнителей приводит к некоторому снижению горючести. Некоторые замедлители горения (красный фосфор, трехокись сурьмы, соли фосфорной кислоты) можно рассматривать как наполнители в том случае, когда не наблюдается их растворения в материале. В качестве армирующих материалов широко применяют стекловолокна, асбест, углеродные волокна, улучшающие физико-механические характеристики, теплостойкость и вместе с тем приводящие к снижению горючести.
В качестве порошкообразных наполнителей, способствующих снижению горючести, применяют окислы и гидроокиси некоторых металлов, графит, окислы кремния, сурьмы, бораты цинка, природные неорганические вещества типа каолина, пемзы, гипса, перлита, вермикулита, различные соли, такие, как оксалаты и карбонаты.
Широкое применение для строительных негорючих полимерных материалов разнообразного назначения получили такие наполнители, как песок, перлит, вермикулит, окись кремния. Каолин, мел, гидроокись алюминия, мелкодисперсный карбонат кальция применяют при изготовлении резин. Гидроокись алюминия, кроме того, входит в композиции типа премикс.
На горючесть наполненных полимерных материалов оказывает влияние не только химическая природа наполнителя, но и его дисперсность, а также прочность сцепления наполнителя и связующего. С увеличением адгезии возрастает прочность материала, что зачастую сопровождается увеличением огнестойкости и стабильности к термоокислению.
Немалую роль в снижении горючести материалов при введении наполнителей играет степень наполнения. Например, в результате увеличения содержания связующего в минераловатных плитах с 4 до 8 % изменяется группа возгораемости материала: несгораемые плиты становятся трудносгораемыми.
Преимущества от введения наполнителей — одновременное улучшение ряда характеристик материала. Основной недостаток аналогичен указанному для выше приведенного способа (расслаивание при повышенных температурах).
Введение замедлителей горения и составов, замедляющих горение, в полимерные материалы заключается обычно в равномерном распределении этих веществ в объеме материала. Этот способ более эффективен по сравнению с предыдущими из-за термических превращений замедлителей горения в зоне пиролиза и поверхностной зоне, а также диффузии продуктов их превращений на поверхность материала. При этом концентрация продуктов термических превращений замедлителей горения в поверхностной зоне резко возрастает, что в свою очередь ведет к ускорению коксования материала. Основным недостатком этого способа является в ряде случаев увеличение горючести материала в процессе его эксплуатации, поскольку введенные замедлители горения могут “выпотевать”, вымываться или иным способом выделяться из материала.
Модификацию полимерных материалов с целью снижения горючести проводят различными методами. Применение этого способа позволяет уменьшить вероятность диффузии частиц, содержащих элементы замедлителей горения, в области 200-350o С. Однако модификация нередко приводит к существенному изменению свойств материала, например к снижению температур размягчения и начала деструкции при введении в полимеры фрагментов, содержащих фосфор и галогены. Кроме того, модификация требует некоторого изменения технологического процесса, что приводит к повышению себестоимости изделий.
Подбор замедлителей горения и антипирирующих составов для множества различных полимерных материалов затруднен [2, c.100], так как разработать типовой рецепт состава, снижающего горючесть и повышающего огнестойкость, не представляется возможным.
В настоящее время выбирают замедлители горения конкретно для каждого материала. Эффективность действия замедлителей горения оценивают эмпирическим путем по факторам, указывающим на снижение горючести материала. К этим факторам относятся:
Образование негорючих газов, которые уменьшают содержание горючих компонентов в газовой смеси, а также вероятность контакта кислорода воздуха с нагретой поверхностью материала.
Эндотермическое разложение самих веществ, замедляющих горение.
Деструкция замедлителя горения с образованием акцепторов свободных радикалов, которые взаимодействуют с продуктами цепных реакций в пламени.
Образование прочного кокса или оксидной пленки, или негорючего пенного слоя на поверхности материала, которые уменьшают перенос тепла от пламени к материалу и предотвращают воздействие активных частиц пламени и кислорода воздуха на полимерный материал.
Образование высокодисперсных частиц, которые уменьшают распространение пламени изменением направления химических реакций, приводит к образованию менее реакционноспособных радикалов.
Указанные факторы являются результатом процессов, протекающих в зоне пиролиза и поверхностном слое материала. Таким образом применение замедлителей горения эффективно, если они способствуют:
· образованию графитоподобных веществ;
· получению на поверхности материала негорючей углеродной пены с закрытыми порами;
· возникновению в поверхностных слоях материала парамагнитных центров, прекращающих цепные реакции распада материала, или частиц, активных молекул, ингибирующих горение материала в предпламенной зоне.
Таким образом, при подборе замедлителей горения или антипирирующих составов для различных полимерных материалов необходимо проводить комплексное исследование свойств самих замедлителей горения и антипирирующих составов с учетом изменения свойств этих материалов в процессе термических превращений данных веществ. Кроме того, необходимо знать поведение полученных огнестойких материалов в процессе эксплуатации, при действии экстремальных тепловых нагрузок или при горении. .
Источник
Пути снижения горючести полимерных материалов используемых для электроизоляции
Физико-математические науки
- Кропотова Наталья Анатольевна , кандидат наук, старший преподаватель
- Ивановская пожарно-спасательная академия ГПС МЧС России
- ПОЛИМЕРНЫЕ МАТЕРИАЛЫ
- ПОЛИМЕРЫ
- СНИЖЕНИЕ ГОРЮЧЕСТИ
Похожие материалы
На рубеже XXI века появились новые искусственные материалы, которые во многом заменили натуральные, но пожары не исчезли. Одним из основных источников опасности стали полимеры. Практически все полимеры, благодаря их углеводородной природе, являются хорошо горючими веществами. В то же время ужесточение требований безопасности во многих сферах нашей жизни диктует необходимость использования негорючих или, по крайней мере, трудногорючих материалов, т.е. таких, которые с трудом воспламеняются и не поддерживают горение самостоятельно, а также не распространяют пламя за счет разбрызгивания, скапывания и т.п. Особенно важны такие материалы для самолетостроения, строительства, общественного транспорта, кабельной промышленности, в электрических и электронных изделиях. Недавние всем известные события – пожары в Останкино, в метро, пожары в квартирах, вызванные неисправностью электрических систем, применением в строительстве легко горючих покрытий и изделий (рис. 1), обострили спрос на такие материалы.
Пожарная опасность материалов и изделий из них определяется в технике следующими характеристиками:
- горючестью, то есть способностью материала загораться, поддерживать и распространять процесс горения;
- дымовыделением при горении и воздействии пламени;
- токсичностью продуктов горения и пиролиза – разложения вещества под действием высоких температур;
- огнестойкостью конструкции, то есть способностью сохранять физико-механические (прочность, жесткость) и функциональные свойства изделия при воздействии пламени [1].
В свою очередь, горючесть – это комплексная характеристика материала или конструкции. Она включает следующие величины:
- температуру воспламенения или самовоспламенения;
- скорости выгорания и распространения пламени по поверхности;
- предельные параметры, характеризующие условия, при которых возможен самоподдерживающийся процесс горения, например состав атмосферы (кислородный индекс) или температура (температурный индекс).
Следует отметить, что перечисленные выше характеристики пожарной опасности и горючести часто являются противоречивыми и улучшение одного из свойств может сопровождаться ухудшением других. Кроме того, введение добавок, снижающих пожарную опасность полимерных материалов, обычно приводит к некоторому ухудшению физико-механических, диэлектрических и других эксплуатационных и технологических свойств, а также повышению стоимости материала. Поэтому снижение пожарной опасности полимерных материалов является задачей по оптимизации комплекса характеристик создаваемого материала.
Что снижает горючесть полимерного материала? Все методы снижения горючести основаны на следующих принципах:
- изменение теплового баланса пламени за счет увеличения различного рода теплопотерь;
- снижение потока тепла от пламени на полимер за счет создания защитных слоев, например из образующегося кокса;
- уменьшение скорости газификации полимера;
- изменение соотношения горючих и негорючих продуктов разложения материала в пользу негорючих.
Наиболее простой способ изменения теплового баланса, увеличения потерь тепла – приклеивание полимера к поверхности теплопроводящего, например металлического, изделия. Если само изделие достаточно массивно, а толщина полимера не слишком велика, то горючесть конструкции может быть значительно ниже, чем самого полимера. Чем тоньше слой полимера, тем больше потери тепла через полимер в подложку и тем в более жестких условиях может происходить самостоятельное горение.
Введение в полимер инертных наполнителей – еще один из способов снижения горючести полимерного материала. Под инертными наполнителями понимают такие, которые не оказывают существенного влияния на состав и количество продуктов пиролиза полимеров в газовой фазе и величину коксового остатка в условиях горения. Их можно разделить на две группы:
- минеральные наполнители, устойчивые до температуры 1000°С – оксиды металлов, фториды кальция и лития, силикаты, технический углерод, неорганическое стекло, порошкообразные металлы и т.п.;
- вещества, разлагающиеся при температурах ниже 400 – 500°С с поглощением тепла и обычно с выделением углекислого газа и/или паров воды, аммиака – гидроксиды, карбонаты, гидрокарбонаты металлов, аммонийфосфаты и т.д. [2]
Дополнительное тепло при введении наполнителей первой группы тратится только на нагрев наполнителя от начальной температуры до температуры поверхности полимера. Однако, как оказывается, в балансе тепла вклад такого нагрева невелик и изменение кислородного индекса при введении разумного количества наполнителя мало. На рис. 2 приведены данные по изменению кислородного индекса при введении в полиэтилен и полиоксиметилен (полиформальдегид, полиацеталь) окиси алюминия (кривые 3 и 4 соответственно); штриховой линией (5) обозначен кислородный индекс (КИ) материала, который может применяться в различных областях, например в строительстве, удовлетворяя международным стандартам по горючести (КИ = 27). Как видно, такая величина кислородного индекса достигается при степени наполнения 85 – 90 мас. %.
Рисунок 2. Зависимость горючести (КИ) полиоксиметилена (1, 3) и полиэтилена (2, 4) от концентрации Al(OH)3 (1, 2) и Al2O3 (3, 4).
Пунктирная линия 5 соответствует “самозатухающему” материалу (КИ = 27).
Однако при больших степенях наполнения материал становится слишком хрупким, его физико-механические свойства обычно не удовлетворяют необходимым требованиям. Больший эффект может быть получен введением наполнителя, разлагающегося с поглощением тепла. Классическим примером такого наполнителя является гидроксид алюминия Al(OH)3, от которого отщепляется вода. В этом случае тепло расходуется как на нагрев наполнителя, так и на разложение наполнителя и нагрев образующейся воды до температуры пламени, а заметное повышение кислородного индекса наблюдается при содержании Al(OH)3 около 55 – 65мас. %. В этом случае снижение горючести существенно зависит от соотношения теплопотерь на разложение наполнителя и всех других потерь тепла от пламени, которые всегда тем выше, чем больше общая теплота горения полимера. Поэтому введение 60% Al(OH)3 в полиэтилен не приводит к существенному повышению кислородного индекса (КИ увеличивается с 17,5 до 25 – 26), в то время как КИ полиформальдегида, обладающего значительно меньшей теплотой сгорания, при этом увеличивается от 15,3 до Рисунок 3. Зависимость кислородного индекса полимеров от выхода коксового остатка при пиролизе.
1 – полиформальдегид; 2 – полиэтилен, полипропилен; 3 – полистирол, полиизопрен; 4 – полиамид; 5 – целлюлоза; 6 – поливиниловый спирт; 7 – полиэтилентерефталат; 8 – полиакрилонитрил; 9 – полифениленоксид огнезащищенный; 10 – поликарбонат; 11 – номекс огнезащищенный; 12 – полисульфон; 13 – кинол (фенолформальдегидный полимер); 14 – полиимид; 15 – углерод.
Следовательно, образование кокса в конденсированной фазе – важный процесс, существенно влияющий на механизм горения. Для многих углеводородных полимеров известна тенденция: чем больше кокса остается при их пиролизе, тем они менее горючи. На рис. 3 приведена корреляционная прямая, связывающая эти два параметра. С другой стороны, химическая структура полимера сама по себе во многом определяет направление его деструкции: чем больше в исходном полимере содержится конденсированных ароматических или гетероароматических группировок, тем выше выход кокса.
Выход кокса при пиролизе полимера можно оценить, зная его химический состав. В первом приближении вклад различных групп, входящих в состав полимера, аддитивен. Такой подход позволяет до определенной степени прогнозировать горючесть новых полимеров и направленно их синтезировать [5].
До сих пор пожары приносят огромный материальный ущерб, исчисляемый десятками миллиардов долларов в год, в них гибнут десятки тысяч людей. Роль современных полимерных материалов в этом особенно существенна. Поэтому поиски путей, ограничивающих горючесть полимеров и уменьшающих выделение дыма и токсичных продуктов при горении, продолжаются во всем мире и на это тратятся значительные финансовые и интеллектуальные средства.
Многие способы ингибирования процессов горения основаны на введении в материал добавок (антипиренов), содержащих атомы хлора или брома, или на химической модификации полимеров также [6]. В то же время сейчас уже однозначно установлено, что эти элементы, попадая в атмосферу, способствуют разрушению озонного слоя Земли. Поэтому одной из главных задач современного полимерного материаловедения является разработка безгалоидных способов снижения горючести.
Целесообразно провести исследования, доказывающие электроизоляционные свойства полимерных материалов, обладающих пониженной горючести.
Работа по созданию рецептуры для синтеза полимерного материала с заданными характеристиками, а также синтезу полимера проводится на базе Ивановской пожарно-спасательной академии ГПС МЧС России [5]. Нами сделаны предположения, что включение в состав полимерного материала слоистого силиката приводит к повышению огнестойкости. Эффект слоистых силикатов полезен в основном для замедления распространения пламени развивающихся пожаров. Поскольку работа требует экспериментальных доказательств, необходимо в дальнейшем провести определение физико-химических свойств созданных полимерных материалов, и доказательство их электроизоляционных свойств пониженной горючести.
Источник