Способы сложения сил геометрический аналитический

Способы задания и сложения сил. Сходящаяся система сил. Геометрический и аналитический методы при определении реакции связи, сходящейся системы сил

Существует два способа задания и сложения сил:

В первом случае сила задается ка вектор, во втором с помощью проекций на оси координат.

Рассмотрим, как складываются силы на примере сходящейся системы сил.

Сходящимися называются силы, линии действия которых пересекаются в одной точке. Эти силы могут быть в плоскости и в пространстве.

В соответствие с четвертой аксиомой, равнодействующая двух пересекающихся сил приложена к точке их пересечения и определяется как диагональ.

Равнодействующая будет также действовать как F1 и F2. На этих силах можно построить силовой треугольник.

С помощью теоремы синусов можно найти зависимость сил.

Если имеем систему сходящихся сил, то главный вектор можно определить путём последовательного сложения сил по правилу параллелограмма, но удобнее строить силовой многоугольник.

Система сходящихся сил имеет равнодействующую равную главному вектору этих сил и приложена в точке пересечения.

Из рассуждений очевидно, если силовой многоугольник замкнут, то равнодействующая равна нулю и все силы взаимно уравновешены. Это положение выражает условие равновесия сходящихся сил в геометрической форме.

Для равновесия системы сходящихся сил, приложенных к твердому телу необходимо и достаточно, чтоб равнодействующая равнялась нулю.

Аналитический способ задания и сложения сил.

Силу можно задать с помощью проекции на ось. Проекция вектора на ось – длина отрезкаab.

Проекция силы F на плоскость Оху – вектор Fxy, заключенный между проекциями начала и конца силы F на эту плоскость, т.е. проекция силы на плоскость величина векторная, характеризуется не только числовым значением, но и направлением в плоскости Оху

Тогда модуль проекции F на плоскость Оху будет равен:

Например, чтобы определить проекцию силы F на ось х, надо спроецировать ее на плоскость Оху, а затем разложить проекцию силы Fxy на составляющие по осям координат Fx и Fy.

Источник

Техническая механика. Конспекты лекций (стр. 3 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Модуль равнодействующей двух сил можно определить из треугольника ACD:

На основании четвертой аксиомы одну силу F∑ можно заменять двумя составляющими силами F1 и F2. Такую замену часто производят при решении задач статики.

Пятая аксиома устанавливает, что в природе не может быть одностороннего действия силы. При взаимодействии тел всякому действию соответствует равное и противоположно направленное противодействие. Так, если на тело В действует сила F1 со стороны материального тела А, то на тело А действует со стороны тела В такая же по численному значению сила F2. Обе силы действуют по одной прямой и направлены в противоположные стороны. Действие и противодействие всегда приложены к различным телам, и именно поэтому они не могут уравновешиваться(рис.6).

Рис.6 Иллюстрации к пятой аксиоме статики

4 Связи и их реакции

Рассматриваемые в механике тела могут быть свободными и несвободными. Свободным называют тело, которое не испытывает никаких препятствий для перемещения в пространстве в любом направлении. Если же тело связано с другими телами, которые ограничивают его движение в одном или нескольких направлениях, то оно является несвободным. Тела, которые ограничивают движение рассматриваемого тела, называют связями.

Читайте также:  Метронидазол способ применения для мужчин

При взаимодействии между телом и его связями возникают силы, противодействующие возможным движениям тела. Эти силы действуют на тело со стороны связей и называются реакциями связей.

Реакция связи всегда противоположна тому направлению, по которому связь препятствует движению тела. Существование реакций обосновывается аксиомой о действии и противодействии. Для определения реакций связей используют принцип освобождения от связей. Не изменяя равновесия тела, каждую связь можно отбросить, заменив ее реакцией. Определение реакций связей является одной из наиболее важных задач статики. Ниже приведены наиболее распространенные виды связей, встречающиеся в задачах:

1. Связь в виде гладкой (т. е. без трения) плоскости или поверхности. В этом случае реакция связи всегда направлена по нормали к опорной поверхности (рис.7а).

2. Связь в виде контакта цилиндрической или шаровой поверхности с плоскостью. В этом случае реакция связи направлена также по нормали к опорной поверхности (рис.7б).

3. Cвязь в виде шероховатой плоскости. Здесь возникают две составляющие реакции: нормальная Rn, перпендикулярная плоскости, и касательная Rt, лежащая в плоскости. Касательная реакция Rt называется силой трения и всегда направлена в сторону, противоположную действительному или возможному движению тела.
Полная реакция R, равная геометрической сумме нормальной и касательной составляющих R=Rn+Rt, отклоняется от нормали к опорной поверхности на некоторый угол р. При взаимодействии тела с реальными связями возникают силы трения. Однако во многих случаях силы трения незначительны и вследствие этого ими часто пренебрегают (рис.7в).

4. Гибкая связь, осуществляемая веревкой, тросом, цепью и т. п. (рис.7г). Реакции гибких связей направлены вдоль связей, причем гибкая связь может работать только на растяжение.

5. Связь в виде жесткого прямого стержня с шарнирным закреплением концов. Здесь реакции всегда направлены вдоль осей стержней. Стержни при этом могут быть как растянутыми, так и сжатыми (рис.7д).

6. Связь, осуществляемая ребром двугранного угла или точечной опорой. Реакция такой связи направлена перпендикулярно поверхности опирающегося тела (рис.7е).

Рис.7 Виды связей.

Тема 1.2 Плоская система сходящихся сил

Лекция № 3 «Плоская система сходящихся сил»

1. Плоская система сходящихся сил

Рис. 8 Силовой многоугольник

Рассмотрим равновесие системы сходящихся сил. Сходящимися называются силы, линии действия которых пере­секаются в одной точке (рис. 8а). Существуют два способа сложения пересекающихся сил: геометрический (рис. 8б) и аналитический (рис. 8в).

Геометрический способ сложения сходящихся сил.

От произвольной точки О откладываем вектор, равный силе 1; от конца 1 откладываем вектор, равный силе 2, и т. д. (см. рис.8, а, б). Затем, соединяя начало вектора 1 с концом последнего 4, получаем равнодействующую всех сил. Построенная фигу­ра называется силовым многоугольником.

Аналитический метод сложения сходящихся сил. Проектируя векторное равенство 1+2+3= на оси коорди­нат, получим два алгебраических равенства:

Flx + F2x + F3x = Rx;

F1 cos 1F2 cos 2 — F3 cos 3 = — R cos .

Отсюда определим значение равнодействующей всех сходящихся сил:

Читайте также:  По способу определения искомой величины различают измерения

и направление вектора :

Условием равновесия системы сходящихся сил является равен­ство нулю модуля равнодействующей , т. е. силовой многоуголь­ник должен быть замкнутым (при геометрическом способе сложе­ния) или, аналитически, проекции равнодействующей силы на оси координат должны быть равны нулю (Rx = Ry = 0). Отсюда для плоской системы сходящихся сил получим два уравнения равнове­сия этих сил:

Следовательно, для равновесия системы сходящихся сил необхо­димо и достаточно, чтобы сумма проекций всех сил на каждую из осей координат была равна нулю.

Метод проекций

Осью называют прямую линию, которой приписано определенное направление. Проекция вектора на ось является скалярной величиной, которая определяется отрезком оси, отсекаемым перпендикулярами, опущенными на нее из начала и конца вектора.

Рис.9 Виды проекций

Проекция вектора считается положительной (+), если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (—), если направление от начала проекции к ее концу противоположно положительному направлению оси.

Тема 1.3 Пара сил и момент силы относительно точки

Лекция № 4 «Пара сил. Момент силы»

Парой сил называют две силы и равные по величине, противоположно направленные и параллельные между собой (рис. 10).

Сила, действующая на тело, может не только смещать его, но и поворачивать вокруг какой-нибудь точки. Пусть сила , приложенная в точке А, стремится повернуть тело вокруг точки О (рис. 10). Поскольку силу можно переносить по линии ее действия, то вращательный эффект этой силы не будет зависеть от того, в какой точке эта сила приложена, и будет зависеть от расстояния h от точки О до линии действия силы.

Моментом силы F относительно некоторого центра О называ­ется величина, равная произведению силы на кратчайшее рас­стояние от точки О до линии действия силы и взятая с соответст­вующим знаком. Знак «плюс» соответствует моменту силы, кото­рая стремится повернуть тело вокруг точки О против хода часо­вой стрелки, а знак «минус» — если сила стремится повернуть тело по направлению движения часовой стрелки. Если линия действия силы проходит через точку, то момент силы относительно этой точки равен нулю. Перпендикуляр, опущенный из точки О на линию действия си­лы , называется ее плечом относительно центра О.

Источник

Тема1.2. Плоская система сходящихся сил

§1. Геометрический способ сложения сил

Решение многих задач механики связано с известной из векторной алгебры операцией сложения векторов и, в частности, сил. Величину, равную геометрической сумме сил какой-нибудь системы, будем называть главным вектором этой системы сил. Понятие о геометрической сумме сил не следует смешивать с понятием о равнодействующей, для многих систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, геометрическую же сумму (главный вектор) можно вычислить для любой системы сил.

Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сло­жением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным. Для нахождения этим способом суммы сил

(рис. 1, a), откладываем от произвольной точки О (рис. 1, б) век­тор Oa, изображающий в выбранном масштабе cилу F1, от точки a откладываем вектор

, изображающий силу F2, от точки b откла­дываем вектор bc, изображающий силу F3 и т. д.; от конца m пред­последнего вектора откладываем вектор mn, изображающий силу Fn. Соединяя начало первого вектора с концом последнего, получаем вектор

Читайте также:  Система трех уравнений с тремя неизвестными матричный способ

, изображающий геометрическую сумму или главный вектор слагаемых сил:

От порядка, в котором будут откладываться векторы сил, модуль и направление не зависят. Легко видеть, что проделанное по­строение представляет собою результат последовательного приме­нения правила силового тре­угольника.

Рис.1. Система сил

Фигура, построенная на рис. 1,б, называется силовым (в общем случае векторным) многоугольником. Таким обра­зом, геометрическая сумма или главный вектор несколь­ких сил изображается замы­кающей стороной силового многоугольника, построенно­го из этих сил (правило сило­вого многоугольника). При построении векторного многоугольника следует помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по обводу многоугольника), а у вектора

— в сторону противоположную.

Сходящимися называются силы, линии дей­ствия которых пересекаются в одной точке, называемой центром системы (см. рис. 1, а).

По следствию из первых двух аксиом статики система сходящихся сил, действующих на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 1, а в точке А).

Последовательно применяя аксиому параллелограмма сил, прихо­дим к выводу, что система сходящихся сил имеет равнодей­ствующую, равную геометрической сумме (главному вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы

сходятся в точке A (рис. 1, а), то сила, равная главному вектору , найденному построением силового мно­гоугольника, и приложенная в точке А, будет равнодействующей этой системы сил.

Примечания.

1. Результат графического определения равнодействующей не изменится, если силы суммировать в другой последовательности, хотя при этом мы получим другой силовой многоугольник — отличный от первого.

2. Фактически силовой многоугольник, составленный из векторов сил заданной системы, является ломаной линией, а не многоугольником в привычном смысле этого слова.

3. Отметим, что в общем случае этот многоугольник будет пространственной фигурой, поэтому графический метод определения равнодействующей удобен только для плоской системы сил.

§2.Равновесие системы сходящихся сил

Из законов меха­ники следует, что твердое тело, на которое действуют взаимно уравновешенные внешние силы, может не только находиться в покое, но и совершать движение, которое мы назовем движением «по инер­ции». Таким движением будет, например, поступательное равномерное и прямолинейное движение тела.

Отсюда получаем два важных вывода:

1) Условиям равновесия статики удовлетворяют силы, действующие как на покоящееся тело, так и на тело, движущееся «по инерции».

2) Уравно­вешенность сил, приложенных к свободному твердому телу, является необходимым, но не достаточным условием равновесия (покоя) самого тела; в покое тело будет при этом находиться лишь в том случае, если оно было в покое и до момента приложения к нему уравнове­шенных сил.

Для равновесия приложенной к твердому телу системы сходя­щихся сил необходимо и достаточно, чтобы равнодействующая этих сил была равна нулю. Условия, которым при этом должны удовле­творять сами силы, можно выразить в геометрической или аналити­ческой форме.

1. Геометрическое условие равновесия. Так как равнодействующая сходящихся сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил, то

Источник

Оцените статью
Разные способы