Способы сглаживания динамического ряда

Сглаживание методом простой скользящей средней

Назначение . С помощью данного онлайн-калькулятора производится сглаживание уровней временного ряда методом скользящей средней.

  • Шаг №1
  • Шаг №2
  • Видеоинструкция

Алгоритм сглаживания методом скользящей средней

  1. Для временного ряда y1,y2. yn определяется интервал сглаживания m (m m уровней временного ряда вычисляется их средняя арифметическая; это будет сглаженное значение уровня ряда, находящегося в середине интервала сглаживания. Затем интервал сглаживания сдвигается на один уровень вправо, повторяется вычисление средней арифметической и т.д. Для вычисления сглаженных уровней ряда у применяется формула:

В результате такой процедуры получаются n — m + 1 сглаженных значений уровня ряда.

Недостатки метода

  1. Первые и последние уровни ряда теряются (не сглаживаются).
  2. Метод применим лишь для рядов, имеющих линейную тенденцию.

Пример . Произвести сглаживание ряда динамики трехквартальной скользящей средней.
Решение.

t y ys Формула
1 1065
2 851 815.67 (1065 + 851 + 531)/3
3 531 768 (851 + 531 + 922)/3
4 922 849.33 (531 + 922 + 1095)/3
5 1095 1001 (922 + 1095 + 986)/3
6 986 967.67 (1095 + 986 + 822)/3
7 822 981.67 (986 + 822 + 1137)/3
8 1137 1086.67 (822 + 1137 + 1301)/3
9 1301 1158.67 (1137 + 1301 + 1038)/3
10 1038 1039.67 (1301 + 1038 + 780)/3
11 780 1084.33 (1038 + 780 + 1435)/3
12 1435 1269.33 (780 + 1435 + 1593)/3
13 1593 1562 (1435 + 1593 + 1658)/3
14 1658 1538 (1593 + 1658 + 1363)/3
15 1363 1586 (1658 + 1363 + 1737)/3
16 1737 1606.33 (1363 + 1737 + 1719)/3
17 1719 1659 (1737 + 1719 + 1521)/3
18 1521 1429.67 (1719 + 1521 + 1049)/3
19 1049 1453.33 (1521 + 1049 + 1790)/3
20 1790 1618.33 (1049 + 1790 + 2016)/3
21 2016

Пример №2 . Произвести сглаживание ряда динамики трехлетней скользящей средней. Изобразить фактический и выровненный ряды графически. Сделать выводы.
Одним из эмпирических методов является метод скользящей средней. Этот метод состоит в замене абсолютных уровней ряда динамики их средними арифметическими значениями за определенные интервалы. Выбираются эти интервалы способом скольжения: постепенно исключаются из интервала первые уровни и включаются последующие.

t y ys Формула
1994 800
1995 864 878 (800 + 864 + 970)/3
1996 970 946.67 (864 + 970 + 1006)/3
1997 1006 1003.67 (970 + 1006 + 1035)/3
1998 1035 1071.67 (1006 + 1035 + 1174)/3
1999 1174 1165.33 (1035 + 1174 + 1287)/3
2000 1287 1267.33 (1174 + 1287 + 1341)/3
2001 1341 1367.67 (1287 + 1341 + 1475)/3
2002 1475 1451.67 (1341 + 1475 + 1539)/3
2003 1539 1575.33 (1475 + 1539 + 1712)/3
2004 1712

Решение было получено и оформлено с помощью сервиса:
Сглаживание методом скользящей средней
Вместе с этой задачей решают также:
Аналитическое выравнивание
Уравнение парной линейной регрессии
Уравнение множественной регрессии
Показатели вариации
Показатели динамики
Одним из эмпирических методов является метод скользящей средней. Этот метод состоит в замене абсолютных уровней ряда динамики их средними арифметическими значениями за определенные интервалы. Выбираются эти интервалы способом скольжения: постепенно исключаются из интервала первые уровни и включаются последующие.

Читайте также:  Способы сокращения расходов организации

Источник

Методы сглаживания рядов динамики

Методы сглаживания и выравнивания динамических рядов.

Исключение случайных колебаний значений уровней ряда осуществляется с помощью нахождения «усредненных» значений. Способы устранения случайных факторов делятся на две больше группы:

1. Способы «механического» сглаживания колебаний путем усреднения значений ряда относительно других, расположенных рядом, уровней ряда.

2. Способы «аналитического» выравнивания, т. е. определения сначала функционального выражения тенденции ряда, а затем новых, расчетных значений ряда.

1.2. 1 Методы «механического» сглаживания.

А. Метод усреднения по двум половинам ряда, когда ряд делится на две части. Затем, рассчитываются два значения средних уровней ряда, по которым графически определяется тенденция ряда. Очевидно, что такой тренд не достаточно полно отражает основную закономерность развития явления.

Б. Метод укрупнения интервалов, при котором производится увеличение протяженности временных промежутков, и рассчитываются новые значения уровней ряда.

В. Метод скользящей средней. Данный метод применяется для характеристики тенденции развития исследуемой статистической совокупности и основан на расчете средних уровней ряда за определенный период. Последовательность определения скользящей средней:

– устанавливается интервал сглаживания или число входящих в него уровней. Если при расчете средней учитываются три уровня, скользящая средняя называется трехчленной, пять уровней – пятичленной и т. д. Если сглаживаются мелкие, беспорядочные колебания уровней в ряду динамики, то интервал (число скользящей средней) увеличивают. Если волны следует сохранить, число членов уменьшают.

– Исчисляют первый средний уровень по арифметической простой:

Y1 – I-ый уровень ряда;

M – членность скользящей средней.

– первый уровень отбрасывают, а в исчисление средней включают уровень, следующий за последним уровнем, участвующем в первом расчете. Процесс продолжается до тех пор, пока в расчет y будет включен последний уровень исследуемого ряда динамики yn.

– по ряду динамики, построенному из средних уровней, выявляют общую тенденцию развития явления.

Отрицательной стороной использования метода скользящей средней является образование сдвигов в колебаниях уровней ряда, обусловленных «скольжением» интервалов укрупнения. Сглаживание с помощью скользящей средней может привести к появлению «обратных» колебаний, когда выпуклая «волна» заменяется на вогнутую.

В последнее время стала рассчитываться адаптивная скользящая средняя. Ее отличие состоит в том, что среднее значение признака, рассчитываемое также как описано выше, относится не к середине ряда, а к последнему промежутку времени в интервале укрупнения. Причем предполагается, что адаптивная средняя зависит от предыдущего уровня в меньшей степени, чем от текущего. То есть., чем больше промежутков времени между уровнем ряда и средним значением, тем меньшее влияние оказывает значение этого уровня ряда на величину средней.

Читайте также:  Что такое тригонометрические неравенства способы их решения

Г. Метод экспоненциальной средней. Экспоненциальная средняя – это адаптивная скользящая средняя, рассчитанная с применением весов, зависящих от степени «удаленности» отдельных уровней ряда от среднего значения. Величина веса убывает по мере удаления уровня по хронологической прямой от среднего значения в соответствии с экспоненциальной функцией, поэтому такая средняя называется экспоненциальной. На практике применяется многократное экспоненциальное сглаживания ряда динамики, которое используется для прогнозирования развития явления.

Вывод: способы, включенные в первую группу, ввиду применяемых методик расчета предоставляют исследователю очень упрощенное, неточное, представление о тенденции в ряду динамики. Однако корректное применение этих способов требует от исследователя глубины знаний о динамике различных социально – экономических явлений.

1.2.2 Методы «аналитического» выравнивания

Более точным способом отображения тенденции динамического ряда является аналитическое выравнивание, т. е. выравнивание с помощью аналитических формул. В этом случае динамический ряд выражается в виде функции у (t), в которой в качестве основного фактора принимается время t, и изменения аргумента функции определяют расчетные значения уt.

Фактическими (или эмпирическими) уровнями ряда динамики называют исходные данные об изменении явления, т. е. данные, полученные опытным путем, посредством наблюдения. Они обозначаются уi. Расчетными (или теоретическими) уровнями ряда называют значения, полученные в результате подстановки в уравнение тренда значений t, и обозначают их.

Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t) . На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t) , а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса.

Чаще всего при выравнивании используются следующий зависимости :

Линейная ;

Параболическая ;

Экспоненциальная

Или ).

1)Линейная зависимость выбирается в тех случаях, когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные и цепные приросты, не проявляющие тенденции ни к увеличению, ни к снижению.

2)Параболическая зависимость используется, если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития, но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют.

3)Экспоненциальные зависимости применяются, если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста, темпов прироста, коэффициентов роста) , либо, при отсутствии такого постоянства, — устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста, цепных коэффициентов роста цепных же коэффициентов или темпов роста и т. д.)

Таким образом, целью аналитического выравнивания является:

– определение вида функционального уравнения;

– нахождения параметров уравнения;

Читайте также:  Constant delight горячее обертывание способ применения

– расчет «теоретических», выровненных уровней, отображающих основную тенденцию ряда динамики.

Графическое отображение изменения уровней ряда играет большую роль в применении данного вида выравнивания. Оно позволяет ускорить процедуру анализа и увеличить степень наглядности полученных результатов.

Сезонность – изменения динамических рядов, имеющих внутригодичную цикличность, зависящие от календарного периода года, явлениями природы, праздниками и др. Например, объем продаж продукции меховой фабрики вырастет в октябре, в ноябре достигнет максимума, снизится к марту, и затем до сентября – октября будет держаться на очень низком уровне. В качестве примера, интересно сравнить сезонные изменения уровня цен в России и странах Западной Европы. В России уровень цен в предпраздничные дни (например, рождество, Новый год, 9 мая, 1 сентября и т. д.) заметно растет. Тогда как в Западной Европе, как правило, в предпраздничные дни проводятся распродажи, т. е. в большинстве своем цены падают.

Явления, подверженные сезонным изменениям, необходимо исследовать на предмет наличия основной тенденции развития. Для этого необходимо распределить объем изменения явления между сезонной составляющей и основной тенденцией.

Изучение и измерение сезонности ряда динамики осуществляется с помощью специального показателя – индекса сезонности. Существует несколько вариантов анализа динамики с помощью индекса сезонности.

Индексы сезонности показывают, во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня, вычисляемого по уравнению тенденции f(t) . При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет. Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года. Индексы сезонности – это, по либо уровень существу, относительные величины координации, когда за базу сравнения принят либо средний уровень ряда, либо уровень тенденции. Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции.

Если тренда нет или он незначителен, то для каждого месяца (квартала) индекс рассчитывается по формуле 32:

Где — уровень показателя за месяц (квартал) t ;

— общий уровень показателя.

Как отмечалось выше, для обеспечения устойчивости показателей можно взять больший промежуток времени. В этом случае расчет производится по формулам 33 :

Где — средний уровень показателя по одноименным месяцам за ряд лет ;

При наличии тренда индекс сезонности определяется на основе методов, исключающих влияние тенденции. Порядок расчета следующий :

1) для каждого уровня определяют выравненные значения по тренду f(t);

2) рассчитывают отношения ;

3) при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле :

,(Т — число лет).

Сглаживание рядов с помощью скользящей средней.

Имеются данные о грузообороте предприятий транспорта РФ за 1999 г. , млрд. т. км.:

Источник

Оцените статью
Разные способы