- Как научить ребёнка двузначным числам
- Было 10 — стало 1. Как это?
- Что такое «дцать»?
- Как зовут десятки?
- Закрепляем знания при помощи кубиков
- Считаем на палочках из-под мороженого
- Таблица двузначных чисел
- Считаем с переходом через десяток
- Как научить ребёнка числам с двумя разрядами и не сойти с ума?
- Эффективные способы быстрого счета в уме
- Способы быстрого счета
- Вычитание 7, 8, 9
- Умножение на 9
- Деление и умножение на 4 и 8
- Умножение на 5
- Умножение на 25
- Умножение на однозначные числа
- Определение диапазонов
- Раскладка на десятки и единицы
- Мысленная визуализация умножения в столбик
- Частные методики умножения двузначных чисел до 30
- Умножение на 11
- Квадрат суммы, квадрат разности
- Опорное число
- Заключение
Как научить ребёнка двузначным числам
Здравствуйте, дорогие родители юных учеников! И снова на повестке дня занимательная математика. Именно она вызывает больше всего сложностей у школьников, и даже мамина фраза «Ну это же так просто!» не спасает ситуацию. Сохраняем самообладание, ведь «Эврика» знает, как научить ребёнка двузначным числам.
Главное правило: действуем последовательно. Переходить к значениям больше 10 стоит только после того, как ребёнок наверняка освоил математические примеры до этого числа.
Было 10 — стало 1. Как это?
У учителей математики есть очень простой и наглядный способ превращения 10 палочек в 1 десяток. Всё просто: их нужно посчитать, чтобы было ровно 10, и связать нитью. Теперь это уже не кучка разрозненных предметов, а цельный пучок. Главное, что он 1.
Продолжаем вязать пучки дальше. Пусть ученик увидит 2 и больше связок по 10 палочек.
Что такое «дцать»?
Расскажите ребёнку, что слово «дцать» — очень древнее, и оно означает «десять». Теперь можно двигаться дальше. Разбираем с учеником значения чисел второго десятка:
- Один-на-дцать. При этом на пучок кладём ещё одну палочку. Пишем «11» и объясняем, что первая единичка — это количество пучков, то есть десятков, а вторая — количество единиц.
- Две-на-дцать. Кладём сверху 2 палочки. Записываем «12» и комментируем так же, как и для «11».
Продолжаем в том же духе до 20. Некоторое время нужно посвятить тому, чтобы ребёнок закрепил полученные знания. На этом этапе нужно решать с ним простые примеры на сложение и вычитание. Продолжаем использовать разные предметы для наглядности: яблоки, игрушки, ложки и так далее.
Например, разложим перед ребёнком 12 карандашей. Пусть он сам сформирует связку из 10 штук и закрепит верёвкой. Теперь добавляем ещё 3 карандаша. Малыш должен увидеть, что связанные карандаши мы не трогаем, а к 2 свободным карандашам добавляем ещё 3. Получается, у нас есть 1 связка и ещё 5 карандашей, то есть 15. Таким же способом представляем простые примеры на вычитание.
При регулярных занятиях наглядные примеры очень скоро утратят свою актуальность, и ребёнок научится считать в уме.
Как зовут десятки?
Теперь малышу следует познакомиться с круглыми значениями более подробно. «Двадцать» и «тридцать» он уже воспримет легко. Стоит подробнее остановиться на цифре «сорок» и рассказать, что её название отличается от других, но означает оно 4 десятка.
Ученику предстоит усвоить ещё одно окончание — «десят», что также означает «десять». Расскажите, что названия чисел от 50 до 80 формируются одинаково, то есть сначала идёт количество десятков, а затем приставка «десят», например, «восемь-десят».
Ещё одно нестандартное название —«девяносто», то есть «9 десятков».
Закрепляем знания при помощи кубиков
Попросите ребёнка построить в 1 ряд 10 кубиков зелёного цвета. Теперь пусть поставит 4 кубика жёлтого цвета в новый ряд. После этого пусть сделает ещё один рядок из 10 зелёных кубиков. И ещё 3 жёлтых кубика пускай поставит в другой ряд.
Итак, имеем 4 ряда. Можно просто пересчитать все кубики. Затем стоит посчитать, сколько всего зелёных и сколько жёлтых кубиков. И напоследок, считаем зелёные кубики десятками, а жёлтые — единицами. То есть у нас 2 ряда зелёных кубиков — это 2 десятка, а жёлтых кубиков — 4 + 3 = 7. Получаем 27.
Считаем на палочках из-под мороженого
Вы любите мороженое на палочке? Прекрасно. Это поможет вашему малышу разобраться с двухразрядными значениями. Чтобы лето прошло не даром, соберите коллекцию палочек из-под мороженого. Максимальное количество — 20 штук. Теперь на одной стороне каждой палочки рисуем 5 точек слева и 5 точек справа. Переворачиваем все палочки и рисуем на каждой по 1 точке в центре.
Два участника берут по 10 штук и бросают на пол. Палочки, на которых мы видим 10 точек, — это десятки, а с одной точкой посередине — это единицы. Сортируем их на 2 группы. Называем число, которое вышло у каждого игрока.
Выиграл тот, у кого значение больше. Смысл занятия — показать наглядно, что числа могут состоять из двух разрядов, и научиться оперировать ими.
Таблица двузначных чисел
Когда ребёнок уже немного освоился, сделайте таблицу значений от 1 до 100. Первый ряд — от 1 до 10, второй — от 11 до 20, самый последний — от 91 до 100. Вырежьте из картона 10 полосок, которые соответствуют длине и ширине одного рядочка. Также вырежьте 10 квадратиков, которые соответствуют размерам одной ячейки таблицы.
Теперь назовите ученику любое число больше 10, например, 35. Он должен взять 3 длинные полоски и закрыть ими 3 верхних ряда таблицы. Затем при помощи 5 квадратиков закрываем цифры 31, 33, 34 и 35.
Считаем с переходом через десяток
Как объяснить ребёнку принцип сложения с переходом через десяток? Сейчас всё подробно обсудим. Рассмотрим пример 17 + 5:
- Раскладываем 17 на 10 и 7. Первое число — обязательно круглое, то есть с 0 в конце. Получаем 10 + 7 + 5.
- Складываем единицы: 7 + 5. Размышляем над цифрой 7 — сколько ей не хватает до 10? Ей не хватает 3. Тогда 3 мы заберём у 5.
- Для этого распишем: 5 = 3 + 2. Пример примет вид: 10 + 7 + 3 + 2.
- Упрощаем его: 10 + 10 + 2 = 12.
Согласитесь — это непростой алгоритм для маленького ученика. Поэтому не расстраивайтесь, если он не поймёт сразу всё. Разберите подобный пример на любых предметах. В конце концов малыш сможет разобраться.
Как научить ребёнка числам с двумя разрядами и не сойти с ума?
Будьте добрым и очень терпеливым учителем. А мы дадим несколько полезных советов:
- Переходите к следующему этапу только после того, как ученик полностью овладел знаниями предыдущего уровня.
- Используйте предметы для счёта и вычисления примеров.
- Умейте вовремя останавливаться, избегайте занятий через силу.
- Используйте компьютерные игры с математическим уклоном.
- Применяйте принцип «повторенье —мать ученья».
Все дети развиваются в индивидуальном темпе. Некоторые владеют двухразрядными числами ещё до школы, а у других они вызывают затруднение и во 2 классе. Будьте терпеливы и занимайтесь систематично, но понемногу. Мы уверены, что у вас всё получится! Будьте с нами на связи и привлекайте к обсуждению своих знакомых. До новых встреч!
Расскажите о нем свои знакомым, нажав на одну из кнопок соц. сетей:
Источник
Эффективные способы быстрого счета в уме
Многие спрашивают, как научиться быстро считать в уме, чтобы это выглядело незаметно и неглупо. Ведь современные технологии позволяют меньше пользоваться своей памятью и умственными способностями. Но иногда нет под рукой данных технологий и порой легче и быстрее посчитать что-то в уме. Многие люди начали считать на калькуляторе или телефоне даже элементарные вещи, что также не очень хорошо. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него. Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу – это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят научиться организовывать себя в различных жизненных ситуациях. Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».
Способы быстрого счета
Существует определенный набор простейших арифметических правил и закономерностей, которые не только нужно знать для устного счета, но и постоянно держать в голове, чтобы в нужный момент оперативно применить самый эффективный алгоритм. Для этого необходимо довести их использование до автоматизма, закрепить в машинальной памяти, чтобы от решения самых простых примеров успешно перейти к более сложным арифметическим действиям. Вот основные алгоритмы, которые нужно знать, помнить и применять мгновенно, автоматически:
Вычитание 7, 8, 9
Чтобы вычесть 9 из любого числа, нужно вычесть из него 10 и прибавить 1. Чтобы вычесть 8 из любого числа, нужно вычесть из него 10 и прибавить 2. Чтобы вычесть 7 из любого числа, нужно вычесть из него 10 и прибавить 3. Если обычно вы считаете по-другому, то для лучшего результата вам нужно привыкнуть к этому новому способу.
Умножение на 9
Быстро умножить любое число на 9 можно при помощи пальцев рук.
Деление и умножение на 4 и 8
Деление (или умножение) на 4 и на 8 являются двукратным или трехкратным делением (или умножением) на 2. Производить эти операции удобно последовательно.
Например, 46*4=46*2*2 =92*2= 184.
Умножение на 5
Умножать на 5 очень просто. Умножение на 5, и деление на 2 – это практически одно и то же. Так 88*5=440, а 88/2=44, поэтому всегда умножайте на 5, поделив число на 2 и умножив его на 10.
Умножение на 25
Умножение на 25 соответствует делению на 4 (с последующим умножением на 100). Так 120*25 = 120/4*100=30*100=3000.
Умножение на однозначные числа
Чтобы быстро считать в уме, полезно уметь умножать двузначные и трехзначные числа на однозначные. Для этого нужно умножать двух- или трехзначное число поразрядно.
Например, умножим 83*7.
Для этого сначала умножим 8 на 7 (и допишем ноль, так как 8 — разряд десятков), и прибавим к этому числу произведение 3 и 7. Таким образом, 83*7=80*7 +3*7= 560+21=581.
Возьмем более сложный пример: 236*3.
Итак, умножаем сложное число на 3 по разрядно: 200*3+30*3+6*3=600+90+18=708.
Определение диапазонов
Чтобы не запутаться в алгоритмах и по ошибке не выдать совсем неверный ответ, важно уметь строить примерный диапазон ответов. Так умножение однозначных чисел друг на друга может дать результат не более 90 (9*9=81), двузначных — не более 10 000 (99*99=9801), трехзначных не более — 1 000 000 (999*999=998001).
Раскладка на десятки и единицы
Способ заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.
63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 +3*5=4800+300+240+15=5355
Проще такие примеры решаются в 3 действия:
1. Сначала умножаются десятки друг на друга.
2. Потом складываются 2 произведения единиц на десятки.
3. Затем прибавляется произведение единиц.
Схематично это можно описать так:
— Первое действие: 60*80 = 4800 — запоминаем
— Второе действие: 60*5+3*80 = 540 – запоминаем
— Третье действие: (4800+540)+3*5= 5355 – ответ
Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.
Мысленная визуализация умножения в столбик
56*67 – посчитаем в столбик. Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа.
Но его можно упростить:
Первое действие: 56*7 = 350+42=392
Второе действие: 56*6=300+36=336 (ну или 392-56)
Третье действие: 336*10+392=3360+392=3 752
Частные методики умножения двузначных чисел до 30
Преимуществом трех способов умножения двузначных для устного счета состоит в том, что они универсальны для любых чисел и при хорошем навыке устного счета, они могут позволить вам достаточно быстро прийти к правильному ответу. Однако эффективность умножения некоторых двузначных чисел в уме может быть выше за счет меньшего количества действий при использовании специальных алгоритмов.
Умножение на 11
Чтобы умножить любое двузначное число на 11, нужно между первой и второй цифрой умножаемого числа вписать сумму первой и второй цифры.
Например: 23*11, пишем 2 и 3, а между ними ставим сумму (2+3). Или короче, что 23*11= 2 (2+3) 3 = 253.
Если сумма чисел в центре дает результат больше 10, тогда добавляем единицу к первой цифре, а вместо второй цифры пишем сумму цифр умножаемого числа минус 10.
Например: 29*11 = 2 (2+9) 9 = 2 (11) 9 = 319.
Быстро умножать на 11 устно можно не только двузначные числа, но и любые другие числа.
Например: 324 * 11=3(3+2)(2+4)4=3564
Квадрат суммы, квадрат разности
Для того чтобы возвести в квадрат двузначное число, можно воспользоваться формулами квадрата суммы или квадрата разности. Например:
23²= (20+3)2 = 202 + 2*3*20 + 32 = 400+120+9 = 529
69² = (70-1)2 = 702 – 70*2*1 + 12 = 4 900-140+1 = 4 761
Возведение в квадрат чисел, заканчивающихся на 5.Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу дописываем 25.
25² = (2*(2+1)) 25 = 625
85² = (8*(8+1)) 25 = 7 225
Это верно и для более сложных примеров:
155² = (15*(15+1)) 25 = (15*16)25 = 24 025
Методика умножения чисел до 20 очень проста:
16*18 = (16+8)*10+6*8 = 288
Доказать правильность этого метода просто: 16*18 = (10+6)*(10+8) = 10*10+10*6+10*8+6*8 = 10*(10+6+8) +6*8. Последнее выражение и является демонстрацией описанного выше метода. По сути, этот метод является частным способом использования опорных чисел . В данном случае опорным числом является 10. В последнем выражении доказательства видно, что именно на 10 мы умножаем скобку. Но в качестве опорного числа можно использовать и любые другие числа, из которых наиболее удобными являются 20, 25, 50, 100…
Опорное число
Посмотрите на суть этого метода на примере умножения 15 и 18. Здесь удобно использовать опорное число 10. 15 больше десяти на 5, а 18 больше десяти на 8.
Для того, чтобы узнать их произведение, нужно совершить следующие операции:
15*18
1. К любому из множителей прибавить число, на которое второй множитель больше опорного. То есть прибавить 8 к 15, или 5 к 18. В первом и втором случае получается одно и то же: 23.
2. Затем 23 умножаем на опорное число, то есть на 10. Ответ: 230
3. К 230 прибавляем произведение 5*8. Ответ: 270.
Опорное число при умножении чисел до 100.Наиболее популярной методикой умножения больших чисел в уме является прием использования, так называемого, опорного числа
Опорное число при умножении – это число, к которому близко находятся оба множителя и на которое удобно умножать. При умножении чисел до 100 опорными числами удобно использовать все числа кратные 10, а особенно 10, 20, 50 и 100.
Методика использования опорного числа зависит от того, являются ли множители больше или меньше опорного числа. Тут возможны три случая. Покажем, все 3 методики на примерах.
Оба числа меньше опорного (под опорным). Допустим, мы хотим умножить 48 на 47.
Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа.
Чтобы умножить 48 на 47, используя опорное число 50, нужно:
47*48
1. Из 47 вычесть столько, сколько не хватает 48 до 50, то есть 2. Получается 45 (или
из 48 вычесть 3 – это всегда одно и то же)
2. Дальше 45 умножаем на 50 = 2250
3. Затем прибавляем 2*3 к этому результату – 2 256
50 (опорное число)
Если числа меньше опорного, то из первого множителя вычитаем разность между опорным числом и вторым множителем. Если числа больше опорного, то к первому множителю прибавляем разность опорного числа и второго множителя .
Одно число под опорным, а другое над.Третий случай использования опорного числа – когда одно число больше опорного, а другое меньше. Такие примеры решаются не сложнее, чем предыдущие. Меньший множитель увеличиваем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей. Или больший множитель уменьшаем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей.
(52-5)*50-5*2=47*50-10=2340 или (45+2)*50-5*2=47*50-10=2340
При умножении двузначных чисел из разных десятков в качестве опорного числа удобнее
брать круглое число , которое больше большего множителя.
27*89
Таким образом, с помощью использования одного опорного числа можно умножать большую комбинацию двузначных чисел. Описанные выше методики можно разделить на универсальные (подходящие для любых чисел) и частные (удобные для конкретных случаев).
В крайнем случае, можно воспользоваться «крестьянским» счетом. Чтобы умножить одно число на другое, допустим 21*75, нам нужно записать числа в две колонки. Первое число левой колонки 21, первое число правого столбика 75. Затем числа стоящие в левой колонке делить на 2 и отбрасывать остаток, пока не получим единицу, а числа в правой колонке умножаем на 2. Все строчки, имеющие четные числа в левой колонке вычеркиваем, а оставшиеся числа в правой колонке складываем, у нас получается точный результат.
21*75
Чтобы научиться быстро считать в уме, нужна практика, нет волшебных методик, чтобы с первого раза начать быстро считать в голове, необходимо постоянно тренировать свой мозг и заставлять его быстро работать и считать.
Заключение
Как и все способы вычислений, данные методы быстрого счета имеют свои достоинства и недостатки:
ПЛЮСЫ:
1.С помощью различных методов быстрых вычислений даже самый малообразованный человек может считать.
2. Способы быстрого счета могут помочь избавиться от сложного действия, путем замены его на несколько более простых.
3.Способы быстрого счета полезны в ситуациях, когда нельзя воспользоваться умножением в столбик.
4.Способы быстрого счета позволяют сократить время вычислений.
5.Устный счет развивает умственную деятельность, что помогает быстрее ориентироваться в сложных жизненных ситуациях.
6. Техника устного счета делает процесс вычислений более увлекательным и интересным.
МИНУСЫ:
1.Зачастую, решать пример, пользуясь способами быстрого счета, оказывается дольше, чем просто перемножать в столбик, так как приходится выполнять большее количество действий, каждое из которых проще первоначального.
2.Бывают ситуации, когда человек от волнения или еще чего-то забывает способы быстрого счета или вовсе — путается в них; в таких случаях ответ получается неправильным, а способы являются фактически бесполезными.
3.Не для всех случаев разработаны способы быстрого счета .
4.Вычисляя с использованием техники быстрого счета, нужно держать множество ответов в голове, в чем можно запутаться и прийти к ошибочному результату.
Несомненно, практика играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые способны считать в уме сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать арифметические операции, которые не каждый человек и в столбик сможет посчитать. Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме.
Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:
1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.
2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.
3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета. Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм. Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете удивить даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.
Источник