Лечебно-профилактические учреждения: обеззараживание воздуха
Работа систем вентиляции – один из главных способов поддержания требуемого санитарно-гигиенического режима в помещениях лечебных учреждений. Проектирование систем вентиляции и кондиционирования воздуха в условиях современных медицинских технологий невозможно без понимания особенностей эпидемиологического состояния воздушной среды, которое характеризуется наличием в ней патогенных микроорганизмов различного происхождения или внутрибольничной инфекции (ВБИ).
ВБИ обладают высокой подвижностью и устойчивостью к дезинфицирующим средствам. По мнению Всемирной организации здравоохранения, в 90 % случаев ВБИ передаются воздушным путем и представляют особую опасность, поскольку вызывают гнойно-воспалительные осложнения (ГВО). Поэтому воздушная среда – главный аспект лечебного процесса, качество которого может способствовать выздоровлению больных или, наоборот, вредить здоровью [1, 2, 3].
По данным существующих публикаций, наблюдается рост ВБИ, а число ГВО и летальность от них стабильно увеличиваются с каждым годом [1]. Только в странах Западной Европы ежегодное число больных превышает 500 тыс., в США отмечается 700 тыс. случаев тяжелых заболеваний [4]. Это увеличивает общие затраты на оказание помощи таким больным, что в 6 раз превышает расходы на пациентов, не имеющих тяжелых инфекционных осложнений [2, 3]. Возрастает роль ВБИ в отделениях реани-мации и интенсивной терапии для нахождения пациентов со сниженным иммунным статусом, где риск возникновения ВБИ достигает 20–25 %, а в отдельных случаях – до 70 % [1].
Следовательно, основным санитарно-гигиеническим критерием качества воздуха лечебных помещений является отсутствие в нем микроорганизмов. Отечественные и зарубежные санитарные нормы регламентируют допустимые уровни бактериальной обсемененности воздушной среды лечебных помещений в зависимости от их функционального назначения и класса чистоты [5, 6, 7], которые должны обеспечиваться совокупностью следующих мероприятий.
В первую очередь, это санитарно-технические мероприятия, то есть правильно организованная работа систем вентиляции, включающая грамотный расчет воздухообмена помещений из условия разбавления микробиологических частиц до допустимого уровня, высокую степень очистки и стерилизацию воздуха современным оборудованием, а также организацию воздухообмена между помещениями, исключающую перетекание воздуха из грязных помещений (зон) в чистые.
Второе – рациональные архитектурно-планировочные решения здания в целом, способствующие разделению чистых и грязных потоков движения больных, персонала и медико-технологических процессов. При этом важно соблюдать зонирование, или барьерность, то есть изоляцию отделений, секций отделений и отдельных помещений друг от друга по воздуху. Наиболее распространенным является применение активных шлюзов при входе в отдельные помещения, секции, отделения, на лестничные клетки и в лифтовые узлы с устройством в них подпора или вытяжки.
Третье – это комплекс противоэпидемических или дезинфекционно-стерилизационных мероприятий, которые разрабатываются санитарными врачами и предусматривают обработку поверхностей помещений и предметов больничного обихода специальными средствами, а самое главное, обеззараживание воздуха помещений.
Все мероприятия направлены на снижение уровня бактериальной обсемененности воздуха и должны применяться совокупно, дополняя друг друга для достижения максимально эффективного результата.
Классическим способом обеспечения чистоты воздуха особо чистых помещений лечебно-профилактических учреждений (ЛПУ), таких как операционные, реанимационные, родовые залы и палаты интенсивной терапии, в течение нескольких десятилетий является применение фильтров высокой эффективности класса Н, или НЕРА-фильтров (High Efficiency Particular Absorber) [8]. В фильтрах используется прием удержания и накопления живых частиц без их инактивации (обеззараживания). Так как накопленные частицы продолжают размножаться, фильтры в некоторых случаях, например при остановке вентилятора или при обслуживании, представляют опасность для систем вентиляции, поскольку являются очагами распространения бактерий и вирусов с воздушными потоками. К тому же фильтры дорогостоящи, обладают коротким сроком службы и требуют замены.
Наряду с НЕРА-технологией очистки широко применяется технология обеззараживания воздуха. Отечественными специалистами разработано оборудование, основой которого является воздействие постоянного электрического поля на микробные клетки, что приводит к их разрушению [9, 10]. Классический и давно известный метод – обеззараживание воздуха ультрафиолетовым бактерицидным облучением [11, 12] с помощью ультрафиолетовых бактерицидных ламп, бактерицидных облучателей и установок, которые можно устанавливать непосредственно в помещениях. Применяются стационарные или передвижные бактерицидные установки различных конструкций.
В соответствии с [11] помещения различных категорий (табл.) должны оборудоваться бактерицидными установками для обеззараживания воздуха с соответствующей бактерицидной дозой. Объемная бактерицидная доза в зависимости от категории помещений приведена в таблице.
Таблица Требуемая объемная бактерицидная доза в зависимости от категории помещения | ||||||||||||||||||
|
В настоящее время в законодательных документах [5] отмечается, что требования к качеству воздушной среды ЛПУ и способам его обеспечения становятся более жесткими. Это находит особое отражение при проектировании систем вентиляции (кондиционирования воздуха). Таким образом, воздух, подаваемый в помещения повышенного класса чистоты, следует очищать и обеззараживать устройствами с эффективностью инактивации микроорганизмов на выходе из установки не менее чем 95–99 %. Системы вытяжной вентиляции в инфекционных отделениях должны оборудоваться устройствами обеззараживания воздуха или фильтрами тонкой очистки. Должна производиться дезинфекция систем вентиляции не реже 1 раза в год [5]. По этому поводу вышел ряд правовых документов [13, 14, 15], основанием для разработки которых послужил научно обоснованный факт опасности возникновения в системах вентиляции источников накопления, размножения и распространения микроорганизмов. Отсюда последовал вывод о необходимости регулярного санитарного контроля внутренних поверхностей вентиляционных устройств и воздуховодов, их очистки и дезинфекции. Для обеззараживания воздуховодов систем вентиляции применяются ультрафиолетовые лампы или секции бактерицидной обработки воздуха канального типа. Они могут размещаться как в самих каналах и воздуховодах, так и в концевой части, например в вытяжных системах для обеззараживания воздуха перед выбросом в атмосферу. Особым классом приборов является оборудование в составе приточных установок систем вентиляции, позволяющее проводить процесс обеззараживания и внутренних поверхностей оборудования, и приточного воздуха в самих установках [16, 17].
Со способами обеззараживания воздуха помещений за счет работы систем механической приточно-вытяжной вентиляции с применением бактерицидных модулей с высокой эффективностью инактивации микробиологических частиц за счет ультра-фиолетового облучения можно ознакомиться в статье А. Л. Вассермана «Ультрафиолетовые бактерицидные модули для систем приточно-вытяжной вентиляции», которая опубликована в этом номере журнала. Там же приводится доступная инженерная методика расчета бактерицидной эффективности, выбора оборудования и определения кратности воздухообмена в каждом конкретном случае.
Источник
Санация воздушной среды
Наибольшее практическое значение’ имеет санация воздуха закрытых помещений с большим скоплением людей.
Очистка и дезинфекция (санация) воздушной среды закрытых помещений производится с помощью специальных очистителей и бактерицидных ламп.
Используют воздухоочистители передвижные рециркуляционные (ВОПР-0.9, ВОПР-1.5).
Из бактерицидных лампприменяют источники ультрафиолетового коротковолнового излучения. Наиболее удобны лампы БУВ.
Возможно два способа применения бактерицидных ламп БУВ:
1. В присутствии людей
Более удобным и эффективным является облучение воздуха в присутствии людей. При этом лампы располагают на высоте 2.5 м в местах наиболее мощного конвекционного потока воздуха (над отопительными приборами, дверьми и тд). Необходимое число ламп БУВ зависит от объема помещения и мощности ламп. При расчете количества ламп исходят из того, что на каждый метр кубический воздуха должно приходится 0.75-1 Вт мощности, потребляемой лампой из сети. Время облучения воздуха не должно превышать 8 ч в сутки. Лучше проводить облучение 3-4 раза в день с перерывами для проветривания помещения.
При санации воздуха в отсутствие людей (операционные, перевязочные и тд.) лампы размещают равномерно или с преобладанием над рабочими поверхностями. При этом на кубометр воздуха необходима потребляемая мощность не менее 1.5 Вт, а минимальное время облучения составляет 15-20 минут.
Кроме ламп БУВ применяют также лампы ПРК.
1. При людях: высота — 1.7 м, мощность — 2-3 Вт/кубометр, облучение -несколько раз в день по 30 минут с интервалами для проветривания.
2. Без людей: мощность — 5-10 Вт/кубометр, время облучения — максимально возможное.
В некоторой степени снижают микробную загрязненность воздуха помещений правильно организованная вентиляция, регулярные проветривания.
6. Влияние высокой температуры воздуха на организм. Терморегуляция. Физиологические нарушения и заболевания, связанные с перегреванием организма. Меры профилактики.
Прежде чем говорить о воздействии высоких температур воздуха на организм человека и состояниях, возникающих при этом воздействии необходимо дать определение нормы, то есть теплового комфорта.
Тепловой комфорт — это мете’орологические условия, обеспечивающие оптимальный уровень физиологических функций ,. в том числе терморегуля-торных при субъективном ощущении комфорта.
В состоянии теплового комфорта система терморегуляции человека находится в состоянии незначительного напряжения. При этом наблюдаются небольшие периодические колебания температуры кожи (для кожи туловища — 33-35 °С), отсутствует активная деятельность потовых желез (теплоотдача испарением составляет 20-30 % от общих потерь тепла). Наблюдается нормальное соотношение процессов возбуждения и торможения в коре головного мозга, оптимальный уровень всех остальных физиологических функций и высокая работоспособность. Имеется субъективное ощущение теплового комфорта.
Состояние теплового комфорта поддерживается за счет работы системы терморегуляции.
Источник
Способы санации воздуха лпу
| |||||||
| |||||||
|