Способы решения выражений с корнями

Содержание
  1. Иррациональные выражения (выражения с корнями) и их преобразование
  2. Что такое иррациональные выражения?
  3. Основные виды преобразований иррациональных выражений
  4. Преобразование подкоренного выражения
  5. Использование свойств корней
  6. Внесение множителя под знак корня
  7. Вынесение множителя из-под знака корня
  8. Преобразование дробей, содержащих корни
  9. Избавление от иррациональности в знаменателе
  10. Переход от корней к степеням
  11. Что такое квадратный корень
  12. Что такое квадратный корень
  13. Разница между квадратным корнем и арифметическим квадратным уравнением
  14. Запись иррациональных чисел с помощью квадратного корня
  15. Извлечение корней
  16. Свойства арифметического квадратного корня
  17. Умножение арифметических корней
  18. Деление арифметических корней
  19. Возведение арифметических корней в степень
  20. Внесение множителя под знак корня
  21. Вынесение множителя из-под знака корня
  22. Сравнение квадратных корней
  23. Извлечение квадратного корня из большого числа

Иррациональные выражения (выражения с корнями) и их преобразование

Статья раскрывает смысл иррациональных выражений и преобразования с ними. Рассмотрим само понятие иррациональных выражений, преобразование и характерные выражения.

Что такое иррациональные выражения?

При знакомстве с корнем в школе мы изучаем понятие иррациональных выражений. Такие выражения тесно связаны с корнями.

Иррациональные выражения – это выражения, которые имеют корень. То есть это выражения, имеющие радикалы.

Основываясь на данном определении, мы имеем, что x — 1 , 8 3 · 3 6 — 1 2 · 3 , 7 — 4 · 3 · ( 2 + 3 ) , 4 · a 2 d 5 : d 9 2 · a 3 5 — это все выражения иррационального типа.

При рассмотрении выражения x · x — 7 · x + 7 x + 3 2 · x — 8 3 получаем, что выражение является рациональным. К рациональным выражениям относят многочлены и алгебраические дроби. Иррациональные включают в себя работу с логарифмическими выражениями или подкоренными выражениями.

Основные виды преобразований иррациональных выражений

При вычислении таких выражений необходимо обратить внимание на ОДЗ. Часто они требуют дополнительных преобразований в виде раскрытия скобок, приведения подобных членов, группировок и так далее. Основа таких преобразований – действия с числами. Преобразования иррациональных выражений придерживаются строгого порядка.

Преобразовать выражение 9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 .

Необходимо выполнить замену числа 9 на выражение, содержащее корень. Тогда получаем, что

81 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 = = 9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3

Полученное выражение имеет подобные слагаемые, поэтому выполним приведение и группировку. Получим

9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 = = 9 — 2 + 1 + 3 3 + 4 · 3 3 — 2 · 3 3 = = 8 + 3 · 3 3
Ответ: 9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 = 8 + 3 · 3 3

Представить выражение x + 3 5 2 — 2 · x + 3 5 + 1 — 9 в виде произведения двух иррациональных с использованием формул сокращенного умножения.

x + 3 5 2 — 2 · x + 3 5 + 1 — 9 = = x + 3 5 — 1 2 — 9

Представляем 9 в виде 3 2 , причем применим формулу разности квадратов:

x + 3 5 — 1 2 — 9 = x + 3 5 — 1 2 — 3 2 = = x + 3 5 — 1 — 3 · x + 3 5 — 1 + 3 = = x + 3 5 — 4 · x + 3 5 + 2

Результат тождественных преобразований привел к произведению двух рациональных выражений, которые необходимо было найти.

x + 3 5 2 — 2 · x + 3 5 + 1 — 9 = = x + 3 5 — 4 · x + 3 5 + 2

Можно выполнять ряд других преобразований, которые относятся к иррациональным выражениям.

Преобразование подкоренного выражения

Важно то, что выражение, находящееся под знаком корня, можно заменить на тождественно равное ему. Данное утверждение дает возможность работать с подкоренным выражением. К примеру, 1 + 6 можно заменить на 7 или 2 · a 5 4 — 6 на 2 · a 4 · a 4 — 6 . Они тождественно равные, поэтому замена имеет смысл.

Когда не существует а 1 , отличное от a , где справедливо неравенство вида a n = a 1 n , тогда такое равенство возможно только при а = а 1 . Значения таких выражений равны с любыми значениями переменных.

Использование свойств корней

Свойства корней применяют для упрощения выражений. Чтобы применить свойство a · b = a · b , где a ≥ 0 , b ≥ 0 , тогда из иррационального вида 1 + 3 · 12 можно стать тождественно равным 1 + 3 · 12 . Свойство . . . a n k n 2 n 1 = a n 1 · n 2 · , . . . , · n k , где a ≥ 0 говорит о том, что x 2 + 4 4 3 можно записать в форме x 2 + 4 24 .

Имеются некоторые нюансы при преобразовании подкоренных выражений. Если имеется выражение, то — 7 — 81 4 = — 7 4 — 81 4 записать не можем, так как формула a b n = a n b n служит только для неотрицательного a и положительного b . Если свойство применить правильно, тогда получится выражение вида 7 4 81 4 .

Для правильного преобразования используют преобразования иррациональных выражений с использованием свойств корней.

Внесение множителя под знак корня

Внести под знак корня – значит заменить выражение B · C n , а B и C являются некоторыми числами или выражениями, где n – натуральное число, которое больше 1 , равным выражением, которое имеет вид B n · C n или — B n · C n .

Если упростить выражение вида 2 · x 3 , то после внесения под корень, получаем, что 2 3 · x 3 . Такие преобразования возможны только после подробного изучения правил внесения множителя под знак корня.

Вынесение множителя из-под знака корня

Если имеется выражение вида B n · C n , тогда его приводят к виду B · C n , где имеется нечетные n , которые принимают вид B · C n с четными n , В и C являются некоторыми числами и выражениями.

То есть, если брать иррациональное выражение вида 2 3 · x 3 , вынести множитель из-под корня, тогда получим выражение 2 · x 3 . Или x + 1 2 · 7 даст в результате выражение вида x + 1 · 7 , которое имеет еще одну запись в виде x + 1 · 7 .

Вынесение множителя из-под корня необходимо для упрощения выражения и его быстрого преобразования.

Преобразование дробей, содержащих корни

Иррациональное выражение может быть как натуральным числом, так и в виде дроби. Для преобразования дробных выражений большое внимание обращают на его знаменатель. Если взять дробь вида ( 2 + 3 ) · x 4 x 2 + 5 3 , то числитель примет вид 5 · x 4 , а, использовав свойства корней, получим, что знаменатель станет x 2 + 5 6 . Исходную дробь можно будет записать в виде 5 · x 4 x 2 + 5 6 .

Необходимо обратить внимание на то, что необходимо изменять знак только числителя или только знаменателя. Получим, что

— x + 2 · x — 3 · x 2 + 7 4 = x + 2 · x — ( — 3 · x 2 + 7 4 ) = x + 2 · x 3 · x 2 — 7 4

Сокращение дроби чаще всего используется при упрощении. Получаем, что

3 · x + 4 3 — 1 · x x + 4 3 — 1 3 сокращаем на x + 4 3 — 1 . Получим выражение 3 · x x + 4 3 — 1 2 .

Перед сокращением необходимо выполнять преобразования, которые упрощают выражение и дают возможность разложить на множители сложное выражение. Чаще всего применяют формулы сокращенного умножения.

Читайте также:  Способы реализации права презентация

Если взять дробь вида 2 · x — y x + y , то необходимо вводить новые переменные u = x и v = x , тогда заданное выражение поменяет вид и станет 2 · u 2 — v 2 u + v . Числитель следует разложить на многочлены по формуле, тогда получим, что

2 · u 2 — v 2 u + v = 2 · ( u — v ) · u + v u + v = 2 · u — v . После выполнения обратной замены придем к виду 2 · x — y , которое равно исходному.

Допускается приведение к новому знаменателю, тогда необходимо числитель умножать на дополнительный множитель. Если взять дробь вида x 3 — 1 0 , 5 · x , тогда приведем к знаменателю x . для этого нужно умножить числитель и знаменатель на выражение 2 · x , тогда получаем выражение x 3 — 1 0 , 5 · x = 2 · x · x 3 — 1 0 , 5 · x · 2 · x = 2 · x · x 3 — 1 x .

Сокращение дробей или приведение подобных необходимо только на ОДЗ указанной дроби. При умножении числителя и знаменателя на иррациональное выражение получаем, что мы избавляемся от иррациональности в знаменателе.

Избавление от иррациональности в знаменателе

Когда выражение избавляется от корня в знаменателе путем преобразования, то это называется избавлением от иррациональности. Рассмотрим на примере дроби вида x 3 3 . После избавления от иррациональности получаем новую дробь вида 9 3 · x 3 .

Переход от корней к степеням

Переходы от корней к степеням необходимы для быстрого преобразования иррациональных выражений. Если рассмотреть равенство a m n = a m n , то видно, что его использование возможно, когда a является положительным числом, m –целым числом, а n – натуральным. Если рассматривать выражение 5 — 2 3 , то иначе имеем право записать его как 5 — 2 3 . Эти выражения равнозначны.

Когда под корнем имеется отрицательное число или число с переменными, тогда формула a m n = a m n не всегда применима. Если нужно заменить такие корни ( — 8 ) 3 5 и ( — 16 ) 2 4 степенями, тогда получаем, что — 8 3 5 и — 16 2 4 по формуле a m n = a m n не работаем с отрицательными а. для того, чтобы подробно разобрать тему подкоренных выражений и их упрощений, необходимо изучать статью о переходе от корней к степеням и обратно. Следует помнить о том, что формула a m n = a m n применима не для всех выражений такого вида. Избавление от иррациональности способствует дальнейшему упрощению выражения, его преобразованию и решению.

Источник

Что такое квадратный корень

О чем эта статья:

Что такое квадратный корень

Определение арифметического квадратного корня ясности не добавляет, но заучить его стоит:

Арифметическим квадратным корнем из неотрицательного числа a называется такое неотрицательное число, квадрат которого равен a.

Определение квадратного корня также можно представить в виде формул:
√a = x
x 2 = a
x ≥ 0
a ≥ 0

Из определения следует, что a не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.

Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.

Попробуем найти корень из √-16

Здесь логично предположить, что 4, но давайте проверим: 4*4 = 16 — не сходится.

Если — 4, то -4 * -4 = 16, (минус на минус всегда дает плюс).

Получается, что ни одно число не может дать отрицательный результат при возведении его в квадрат.

Числа, стоящие под знаком корня, должны быть положительными.

Исходя из определения, значение корня также не должно быть отрицательным.

Здесь могут возникнуть резонные вопросы, почему, например, в примере x 2 = 16, x = 4 и x = -4.

Разница между квадратным корнем и арифметическим квадратным уравнением

Прежде всего, чтобы разграничить эти два понятия, запомните:

  • x 2 = 16 не равно x = √16.

Это два нетождественных друг другу выражения.

  • x 2 = 16 — это квадратное уравнение.
  • x = √ 16 — арифметический квадратный корень.

Из выражения x 2 = 16 следует, что:

  • |x| = √16, это значит, что x = ±√16 = ±4, x1 = 4, x2 = -4.

Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.

В то же самое время, из выражения x = √16 следует, что x = 4.

Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:

  1. Пример решен неверно
  2. Это квадратное уравнение.

Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.

Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.

Даны два выражения:

Первое выражение — квадратное уравнение.

Второе выражение — арифметический квадратный корень.

Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.

Запись иррациональных чисел с помощью квадратного корня

Иррациональное число — это число, которое нельзя представить в виде обыкновенной дроби.

Чаще всего, иррациональные числа можно встретить в виде корней, логарифмов, степеней и т.д.

Примеры иррациональных чисел:

Чтобы упростить запись иррациональных чисел, математики ввели понятие квадратного корня. Давайте разберем пару примеров, чтобы увидеть квадратный корень в деле.

Дано уравнение: x 2 = 2.

Сразу сталкиваемся с проблемой, поскольку очевидно, что ни одно целое число не подходит.

Переберем числа, чтобы удостовериться в этом:

1 * 1 = 1,
2 * 2 = 4,
3 * 3 = 9.

Отрицательные числа дают такой же результат. Значит результатом решения не могут быть целые числа.

Решение следующее:
Строим график функции y = x 2 .
Отмечаем решения на графике: -√2; √2.

Если попробовать извлечь квадратный корень из 2 с помощью калькулятора, то результат будет следующий: √2 = 1,414213… .

В таком виде ответ не записывают — нужно оставить квадратный корень.
x 2 = 2.
x = √2
x = -√2.

Извлечение корней

Решать примеры с квадратными корнями намного легче, если запомнить как можно больше квадратов чисел. Для этого воспользуйтесь таблицей — сохраните ее себе и используйте для решения задачек.

Читайте также:  Речення наказового способу дієслів

Таблица квадратов

Вот несколько примеров извлечения корней, чтобы научиться пользоваться таблицей:

  • 1. Извлеките квадратный корень: √289

Ищем в таблице число 289, двигаемся от него влево и вверх, чтобы определить цифры, образующие нужное нам число.

Влево — 1, вверх — 7.

  • 2. Извлеките квадратный корень: √3025

Ищем в таблице число 3025.
Влево — 5, вверх — 5.

  • 3. Извлеките квадратный корень: √7396

Ищем в таблице число 7396.

Влево — 8, вверх — 6.

  • 4. Извлеките корень: √9025

Ищем в таблице число 9025.

Влево — 9, вверх — 5.

  • 5. Извлеките корень √1600

Ищем в таблице число 1600.

Влево — 4, вверх — 0.

Извлечением корня называется нахождение его значение.

Свойства арифметического квадратного корня

У арифметического квадратного корня есть 3 свойства — их нужно запомнить, чтобы проще решать примеры.

  • Корень произведения равен произведению корней
  • Извлечь корень из дроби — это извлечь корень из числителя и из знаменателя
  • Чтобы возвести корень в степень, нужно возвести в степень значение под корнем

Давайте потренируемся и порешаем примеры на все три операции с корнями. Не забывайте обращаться к таблице квадратов. Попробуйте решить примеры самостоятельно, а для проверки обращайтесь к ответам.

Умножение арифметических корней

Для умножения арифметических корней используйте формулу:

Примеры:

Внимательно посмотрите на второе выражение и запомните, как записываются такие примеры.

Если нет возможности извлечь корни из чисел, то поступаем так:

  1. Если множителей больше двух, то решается примерно точно так, как и с двумя множителями:

Деление арифметических корней

Для деления арифметических корней используйте формулу:

Примеры:

Ответ: смешанную дробь превращаем в неправильную (16 * 3) + 1 = 49

  • Выполняя деление, не забывайте сокращать множители. При делении арифметических корней, используйте правила преобразования обыкновенных дробей.

    Возведение арифметических корней в степень

    Для возведения арифметического корня в степень используйте формулу:

    Примеры:

    Эти две формулы нужно запомнить:

    • (√a) 2 = a
    • √a 2 = |a|

    Повторите свойства степеней, чтобы без труда решать такие примеры.

    Внесение множителя под знак корня

    Вы уже умеете по-всякому крутить и вертеть квадратными корнями: умножать, делить, возводить в степень. Богатый арсенал, не правда ли? Осталось овладеть еще парой приемов и можно без страха браться за любую задачку.

    А теперь давайте разберемся, как вносить множитель под знак корня.

    Дано выражение: 7√9

    Число семь умножено на квадратный корень из числа девять.

    Извлечем квадратный корень и умножим его на 7.

    В данном выражение число 7 — множитель. Давайте внесем его под знак корня.

    Запомните, что вносить множитель под знак корня обязательно нужно так, чтобы значение исходного выражения осталось неизменным. Иными словами, после наших манипуляций с корнем, значение выражения должно по-прежнему оставаться 21.

    Вы помните, что (√a) 2 = a

    Тогда число 7 должно быть возведено во вторую степень. В этом случае значение выражения останется тем же.

    7√9 = √7 2 * 9 = √49 * 9 = √49 * √9 = 7 * 3 = 21.

    Формула внесения множителя под знак корня:

    Потренируемся вносить множители. Попробуйте решить примеры самостоятельно, сверяясь с ответами.

    Вынесение множителя из-под знака корня

    С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.

    Дано выражение в виде квадратного корня из произведения.

    Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.

    Извлекаем корень из всех имеющихся множителей.

    В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:

    Таким образом множитель выносится из-под знака корня.

    Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.

    Раскладываем подкоренное выражение на множители 28 = 7*4.

    Извлекаем корень из 4. Множитель 7 оставляем под знаком корня.


  • Ответ: по правилу извлечения квадратного корня из произведения,

    Так как вынесенный множитель должен стоять перед подкоренным знаком, то меняем их местами.
  • Вынесите множитель из-под знака корня в выражении: √24

    Ответ: Раскладываем выражение под корнем на множители 24 = 6 * 4.

  • Упростите выражение:

    Вынесем в двух последних выражения множитель из-под знака корня.

    Умножаем (-4 * 4) = -16. Все остальное выражение записываем в неизменном виде.

    Мы видим, что во всем выражении есть один общий множитель — √5.
    Выносим общий множитель за скобки:

    Далее вычисляем все, что в скобках:
  • Сравнение квадратных корней

    Мы почти досконально разобрали арифметический квадратный корень, научились умножать, делить и возводить его в степень. Теперь вы без труда можете вносить множители под знак корня и выносить их оттуда. Осталось научиться сравнивать корни и стать непобедимым теоретиком.

    Итак, чтобы понять, как сравнить два квадратных корня, нужно запомнить пару правил.

    Если:

    Потренируйтесь в сравнении корней. Сверяете свои результаты с ответами.

      Сравните два выражения: √50 и 9√5

    Ответ: преобразовываем выражение 9√5.

    9√5 = √81 * √5 = √81*5 = √405

    Это значит, что 6√5 > √18.

    Сравните два выражения: 7√12 и √20

    Ответ: преобразовываем выражение 7√12.

    7√12 = √49 * √12 = √49*12 = √588

    Это значит, что 7√12 > √20.

    Как видите, ничего сложного в сравнении арифметических квадратных корней нет.

    Самое главное — выучить формулы и сверяться с таблицей квадратов, если значения корня слишком большие для легкого вычисления в уме.

    Не бойтесь пользоваться вспомогательными материалами. Математика просто создана для того, чтобы окружить себя подсказками и намеками.

    Когда вы почувствуете, что уже достаточно натренировались в решении примеров с квадратными корнями, можете позволить себе время от времени прибегать к помощи онлайн-калькуляторов. Они помогут решать примеры быстрее и быть эффективнее.

    Читайте также:  Время копчения холодным способом продуктов

    Таких калькуляторов в интернете много, вот один из них.

    Извлечение квадратного корня из большого числа

    Вы уже наверняка познакомились и подружились с таблицей квадратов. Она — ваша правая рука. С ее помощью вы реактивно решаете примеры и, возможно, даже подумываете запомнить ее наизусть.

    Но, как вы можете заметить, таблица заканчивается на числе 9801. А это, согласитесь, не самое крупное число из тех, что могут вам попасться в примере.

    Чтобы извлечь корень из большого числа, которое отсутствует в таблице квадратов, нужно:

    1. Определить «сотни», между которыми оно стоит.
    2. Определить «десятки», между которыми оно стоит.
    3. Определить последнюю цифру в этом числе.

    Извлечь корень из большого числа можно разными способами — вот один из них.

    Извлечем корень из √2116.

    Наша задача в том, чтобы определить между какими десятками стоит число 2116.

    Мы видим что, 2116 больше 1600, но меньше 2500.

    Это значит, что число 2116 находится между 40 2 и 50 2 .

    41, 42, 43, 44, 45, 46, 47, 48, 49.

    Запомните лайфхак по вычислению всего на свете, что нужно возвести в квадрат.

    Не секрет, что на последнем месте в любом числе может стоять только одна цифра от 1 до 0.

    Как пользоваться таблицей

    4 2 = 16 ⇒ 6

    5 2 = 25 ⇒ 5

    6 2 = 36 ⇒ 6

    7 2 = 49 ⇒ 9

    8 2 = 64 ⇒ 4

    9 2 = 81 ⇒ 1

    Мы знаем, что число 41, возведенное в квадрат, даст число, на конце которого — цифра 1.

    Число, 42, возведенное в квадрат, даст число, на конце которого — цифра 4.

    Число 43, возведенное в квадрат, даст число, на конце которого — 9.

    Такая закономерность позволяет нам без записи «перебрать» все возможные варианты, исключая те, которые не дают нужную нам цифру 6 на конце.

    Таким образом, у нас остаются два варианта: 44 2 и 46 2 .

    Далее вычисляем: 44 * 44 = 1936.

    Если такой способ показался не до конца понятным — можно потратить чуть больше времени и разложить число на множители. Если решить все правильно, получим такой же результат.

    Еще пример. Извлечем корень из числа √11664

    Разложим число 11664 на множители:

    Запишем выражение в следующем виде:

    Извлечь квадратный корень из большого числа гораздо проще с помощью калькулятора. Но знать парочку таких способов «на экстренный случай» точно не повредит. Например, для контрольной или ЕГЭ.

    Чтобы закрепить все теоретические знания, давайте ещё немного поупражняемся в решении примеров на арифметические квадратные корни.

    • 1. Вычислите значение квадратного корня: √36
    • 2. Вычислите значение квадратного корня: √64*36
    • 3. Вычислите значение квадратного корня:
    • 4. Вычислите значение квадратного корня:
    • 5. Вычислите значение квадратного корня:
    • 6. Вычислите значение выражения: 4√16 — 12
    • 7. Вычислите значение выражения: 5√9 — 8
    • 8. Вычислите значение выражения: 7√25 — 10
    • 9. Вычислите значение квадратного корня:
    • 10. Вычислите значение квадратного уравнения:
    • 11. Вычислите значение квадратного уравнения:
    • 12. Извлеките квадратный корень из числа √7056 удобным вам способом
      Как решаем:

    • 13. Вычислите значение квадратного корня √0,81
      Ответ: √0,81 = 0,9
    • 14. Вычислите значение квадратного корня:
      Как решаем: = 0,09
    • 15. Вычислите значение выражения: 8√81 — 20
      Как решаем: 8√81 — 20 = 8 * 9 — 20 = 72 — 20 = 52
      Ответ: 8√81 — 20 = 52.
    • 16. Вычислите значение выражения: 13√100 — 15
      Как решаем: 13√100 — 15 = 13 * 10 — 15 = 130 — 15 = 115
      Ответ: 13√100 — 15 = 115.
    • 17. Вычислите значение выражения: √16 + 5√4
      Как решаем: √16 + 5√4 = 4 + 5 * 4 = 4 + 20 = 24 Ответ: √16 + 5√4 = 24.
    • 18. Вычислите значение выражения: √36 + 2√9
      Как решаем: √36 + 2√9 = 6 + 2 * 3 = 6 + 6 = 12
      Ответ: √36 + 2√9 = 12.
    • 19. Вычислите значение выражения: 2√16 — 3√25
      Как решаем: 2√16 — 3√25 = 2 * 4 — 3 * 5 = 8 — 15 = -7
      Ответ: 2√16 — 3√25 = -7.
    • 20. Вычислите значение выражения: 3√81 — 5√9
      Как решаем: 3√81 — 5√9 = 3*9 — 5 * 3 = 27 — 15 = 12
      Ответ: 3√81 — 5√9 = 12.
    • 21. Вынесите множитель из-под знака корень: √60
      Как решаем: √60 = √15 * √4 = 2√15
      Ответ: √60 = 2√15.
    • 22. Вынесите множитель из-под знака корень: √160
      Как решаем: √160 = √16 * √10 = 4√10
      Ответ: √160 = 4√10.
    • 23. Внесите множитель под знак корня: 6√7
      Как решаем: √6 2 * 7 = √36 * √7 = √252
      Ответ: 6√7 = √252.
    • 24. Внесите множитель под знак корня: 8√2
      Как решаем: 8√2 = √8 2 * 2 = √64 * √2 = √128 Ответ: 8√2 = √128.
    • 25. Внесите множитель под знак корня: 9√5

      Как решаем: 9√5 = √9 2 * 5 = √81 * √5 = √405
      Ответ: 9√5 = √405.

    • 26. Упростите выражение: (5 — √2) 2
      Как решаем: (5 — √2) 2 = 5 2 — 2 * 5 * √2 + (√2) 2 = 25 — 10√2 + 2 = 27 — 10√2.
      Ответ: (5 — √2) 2 = 27 — 10√2.
    • 27. Вычислите значение выражения: 3√49 — 3√25
      Как решаем: 3√49 — 3√25 = 3 * 7 — 3 * 5 = 21 — 15 = 6
      Ответ: 3√49 — 3√25 = 6.
    • 28. Вычислите значение квадратного корня: √484 * √576
      Как решаем: √484 * √576 = 22 * 24 = 528
      Ответ: √484 * √576 = 528.
    • 29. Вычислите значение квадратного корня: √625 * √81
      Как решаем: √625 * √81 = 25 * 9 = 225
      Ответ: √625 * √81 = 225.
    • 30. Найдите значение выражения: 3√100 — √144
      Как решаем: 3100 — 144 = 3 * 10 — 12 = 18
      Ответ: 3√100 — √144 = 18.

    109004, Москва, ул. Александра Солженицына, 23а, строение 1, подъезд 10

    Источник

    Оцените статью
    Разные способы