Работу выполнила: Мусина В.А. студентка группы 45.3
Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов:из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.
Задача 1 . Решите систему уравнений
Из первого уравнения находим и подставляем во второе.
Получаем
Замечание. Если бы для нахождения значения y мы не рассмотрели отдельно формулу (1) со знаком «+» и знаком «–», то вместе с верными решениями получили бы и посторонние решения заданной системы.
Действительно, в таком случае имеем
Тогда, например, при n = 0 получаем
Таким образом, кроме решений, которые вошли в ответ, мы имеем еще две возможности:
Но эти пары значений х и у не являются решениями заданной системы, поскольку они не удовлетворяют первому уравнению.
Поэтому следует запомнить:
Когда решение уравнения cos x = а приходится применять для дальнейших преобразований, то удобно записывать его в виде двух формул: отдельно со знаком «+» и отдельно со знаком «–».
Задача 2 . Решите систему уравнений
Почленно сложим и вычтем эти уравнения. Получим равносильну систему
Представим последнюю систему в виде совокупности двух систем, записывая решения второго уравнения отдельно со знаком «+» и отдельно со знаком «–»:
Почленно складывая и вычитая уравнения этих систем, находим x и y:
Замечание. В запись ответа вошли два параметра n и k, которые независимо друг от друга «пробегают» множество целых чисел. Если попробовать при решении заданной системы воспользоваться только одним параметром, например n, то это приведет к потере решений. Таким образом, в каждом случае, когда система тригонометрических уравнений приводится к системе, состоящей из элементарных тригонометрических уравнений (то есть из уравнений вида sin x = a, cos x = a, tg x = a, ctg x = a), при решении каждого из этих уравнений необходимо использовать свой целочисленный параметр.
Какие методы используются для решения систем тригонометрических уравнений?
Объясните, в каком случае при формальном решении системы уравнений мы можем потерять часть решений, а в каком случае —получить посторонние решения. Решите эту систему.
Упражнения
Решите систему уравнений (1–8).
Источник
Решение систем тригонометрических уравнений
Системы тригонометрических уравнений бесконечно разнообразны. При их решении используются как общие методы: подстановки, сложения, замены переменной, так и частные, связанные с особенностями преобразований тригонометрических функций. В этом параграфе мы рассмотрим только некоторые, наиболее характерные, подходы к решению таких систем.
п.1. Системы, в которых одно из уравнений является линейным
Если одно из уравнений системы является линейным, то система решается методом подстановки.
Например: Решим систему \( \begin x+y=\frac\pi4\\ tgx+tgy=1 \end \) Из верхнего линейного уравнения выражаем \(y\) через \(x\) и подставляем в нижнее: \begin \begin y=\frac\pi4-x\\ tgx+tg\left(\frac\pi4-x\right)=1 \end \end Решаем полученное уравнение относительно \(x\): \begin tgx+\frac<1+tg\frac\pi4\cdot tgx>=1\Rightarrow \frac<1-tgx><1+tgx>=1-tgx \end ОДЗ: \(tgx\ne -1\) \begin 1-tgx=(1-tgx)(1+tgx)\Rightarrow(1-tgx)(1-1-tgx)=0\\ -tgx(1-tgx)=0\\ \begin \left[ \begin tgx=0\\ tgx=1 \end \right. \\ tgx\ne -1 \end \Rightarrow \left[ \begin tgx=0\\ tgx=1 \end \right. \Rightarrow \left[ \begin x_1=\pi k\\ x_2=\frac\pi4+\pi k \end \right. \end Получаем две пары решений: \begin \left[ \begin \begin x_1=\pi k\\ y_1=\frac\pi4-x=\frac\pi4-\pi k \end \\ \begin x_2=\frac\pi4+\pi k\\ y_2=\frac\pi4-\left(\frac\pi4+\pi k\right)=-\pi k \end \end \right. \end Ответ: \(\left\<\left(\pi k;\ \frac\pi4-\pi k\right),\ \left(\frac\pi4+\pi k;\ -\pi k\right)\right\>\)
п.2. Системы с независимыми уравнениями
Если уравнения системы являются независимыми, то они решаются по отдельности. При этом счетчики периодов обязательно должны быть различными (например, \(k\) и \(n\), для двух независимых уравнений).
Например: Решим систему \( \begin sin(x-y)=0\\ cox(x+y)=1 \end \) Уравнения независимы, решаем каждое из них, а затем методом сложения находим \(x\) и \(y\): \begin \begin x-y=\pi k\\ x+y=2\pi n \end \Rightarrow \begin 2x=\pi k+2\pi n\\ 2y=2\pi n-\pi k \end \Rightarrow \begin x=\frac<\pi k><2>+\pi n=\frac\pi2(k+2n)=\frac\pi2(2n+k)\\ y=\pi n-\frac<\pi k><2>=\frac\pi2(2n-k) \end \end Ответ: \(\left(\frac\pi2(2n+k);\ \frac\pi2(2n-k)\right)\)
п.3. Системы с произведениями тригонометрических функций
Системы с произведениями тригонометрических функций и приводимые к ним решаются методом сложения.
Например: Решим систему \( \begin sinx siny=\frac<\sqrt<3>><4>\\ cosx cosy=\frac<\sqrt<3>> <4>\end \) Добавим и вычтем уравнения и используем формулы косинуса суммы и разности: \begin \begin cosxcosy+sinxsiny=\frac<\sqrt<3>><2>\\ cosxcosy-sinxsiny=0 \end \Rightarrow \begin cos(x-y)=\frac<\sqrt<3>><2>\\ cos(x+y)=0 \end \end Мы получили систему из двух независимых уравнений. Решаем каждое из них, и затем используем метод сложения, чтобы найти \(x\) и \(y\): \begin \begin x-y=\pm\frac\pi6+2\pi k\\ x+y=\frac\pi2+\pi n \end \Rightarrow \begin 2x=\pm\frac\pi6+\frac\pi2+\pi(2k+n)\\ 2y=\frac\pi2\pm\frac\pi6+\pi(n-2k) \end \Rightarrow \begin x=\pm\frac<\pi><12>+\frac\pi4+\frac\pi2(2k+n)\\ y=\frac\pi4\pm\frac<\pi><12>+\frac\pi2(n-2k) \end \end Получаем две пары решений: \begin \left[ \begin\begin x_1=\frac\pi6+\frac\pi2(2k+n)\\ y_1=\frac\pi3+\frac\pi2(n-2k) \end \\ \begin x_2=\frac\pi3+\frac\pi2(2k+n)\\ y_2=\frac\pi6+\frac\pi2(n-2k) \end \end \right. \end Ответ: \(\left\<\left(\frac\pi6+\frac\pi2(2k+n);\ \frac\pi3+\frac\pi2(n-2k)\right),\ \left(\frac\pi3+\frac\pi2(2k+n);\ \frac\pi6+\frac\pi2(n-2k)\right)\right\>\)
п.4. Замена переменных в системах тригонометрических уравнений
Системы двух уравнений с двумя тригонометрическими функциями легко решаются с помощью замены переменных.
Пример 1. Решите систему уравнений: a) \( \begin x+y=\pi\\ sinx+siny=\sqrt <3>\end \) Из верхнего линейного уравнения выражаем \(y\) через \(x\) и подставляем в нижнее: \begin \begin y=\pi-x\\ sinx+sin(\pi-x)=\sqrt <3>\end \end Решаем полученное уравнение относительно \(x\): \begin sinx+sinx=\sqrt<3>\Rightarrow 2sinx=\sqrt<3>\Rightarrow sinx=\frac<\sqrt<3>><2>\Rightarrow\\ \Rightarrow x=(-1)^k\frac\pi3+\pi k= \left[ \begin\frac\pi3+2\pi k\\ \frac<2\pi><3>+2\pi k \end \right. \end Получаем две пары решений: \begin \left[ \begin\begin x=\frac\pi3+2\pi k\\ y=\pi-x=\pi-\frac\pi3-2\pi k=\frac<2\pi><3>-2\pi k \end \\ \begin x=\frac<2\pi><3>+2\pi k\\ y=\pi-x=\pi-\frac<2\pi><3>-2\pi k=\frac\pi3-2\pi k \end \end \right. \end Ответ: \(\left\<\left(\frac\pi3+2\pi k;\ \frac<2\pi><3>-2\pi k\right),\ \left(\frac<2\pi><3>+2\pi k;\ \frac\pi3-2\pi k\right)\right\>\)
б) \( \begin sinxcosy=\frac34\\ cosxsiny=\frac14 \end \) Добавим и вычтем уравнения и используем формулы синуса суммы и разности: \begin \begin sinxcosy+cosxsiny=1\\ sinxcosy-cosxsiny\frac12 \end \Rightarrow \begin sin(x+y)=1\\ sin(x-y)=\frac12 \end \end Мы получили систему из двух независимых уравнений. Решаем каждое из них, и затем используем метод сложения, чтобы найти \(x\) и \(y\): \begin \begin x+y=\frac\pi2+2\pi k\\ x-y=(-1)^n\frac\pi6=\pi n \end \Rightarrow \begin 2x=\frac\pi2+(-1)^n\frac\pi6+\pi(2k+n)\\ 2y=\frac\pi2-(-1)^n\frac\pi6+\pi(2k-n) \end \Rightarrow\\ \Rightarrow \begin x=\frac\pi4+(-1)^n\frac<\pi><12>+\frac\pi2(2k+n)\\ y=\frac\pi4-(-1)^n\frac<\pi><12>+\frac\pi2(2k-n) \end \end Ответ: \(\left(\frac\pi4+(-1)^n\frac<\pi><12>+\frac\pi2(2k+n);\ \frac\pi4-(-1)^n\frac<\pi><12>+\frac\pi2(2k-n)\right)\)
Пример 2*. Решите систему уравнений: a) \( \begin \sqrtcosx=0\\ 2sin^2x-cos\left(2y-\frac\pi3\right)=0 \end \) Первое уравнение является независимым. Решаем его, чтобы найти \(x\): \begin \begin \left[ \begincos2x=0\\ cosx=0 \end \right.\\ cos2x\geq 0 \end \Rightarrow \begin \left[ \begin2x=\frac\pi2+\pi k\\ x=\frac\pi2+\pi k \end \right.\\ -\frac\pi2+2\pi k\leq 2x\leq\frac\pi2+2\pi k \end \Rightarrow \begin \left[ \beginx=\frac\pi4+\frac<\pi k><2>\\ x=\frac\pi2+\pi k \end \right.\\ -\frac\pi4+\pi k\leq x\leq\frac\pi4+\pi k \end \end
Семейство решений \(x=\frac\pi2+\pi k\) не подходит по требованию ОДЗ (закрашенные сектора). Остается только: \begin x=\frac\pi4+\frac<\pi k> <2>\end