- Вторая часть ЕГЭ по профильной математике: лайфхаки решения заданий
- Что из себя представляет вторая часть в 2021
- Критерии оценивания
- Как решать вторую часть ЕГЭ по профильной математике
- Задание 9
- Задание 10
- Задание 11
- Задание 12
- Задание 13
- Задание 14
- Задание 15
- Задание 16
- Задание 17
- Задание 18
- Задание 19
- Уравнения, часть С
- Теория к заданию 13 из ЕГЭ по математике (профильной)
- Уравнения, часть $С$
- Схема решения сложных уравнений:
- ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
- Логарифмические уравнения
- Дробно рациональные уравнения
- Показательные уравнения
- Виды показательных уравнений:
- Применение формул сокращенного умножения
- Метод группировки
- С помощью формулы квадратного трехчлена.
Вторая часть ЕГЭ по профильной математике: лайфхаки решения заданий
Профильная математика — один из самых сложных экзаменов для большинства выпускников, от которого зависит аттестат. Именно стоит узнать, как решается вторая часть профильной математики ЕГЭ, так как именно за нее даются баллы, необходимые для результата 85+.
Что из себя представляет вторая часть в 2021
В 2021 году вторая часть профильной математики ЕГЭ состоит из одиннадцати номеров (четыре с кратким ответом, семь — с развернутым). Для их решения необходимо приобрести определенные знания и навыки:
- умение решать задачи (текстовые, прикладные, экономические, олимпиадные),
- умение анализировать функции,
- умение составлять и решать выражения,
- умение решать уравнения,
- умение решать неравенства,
- умение работать с параметром,
- знание стереометрии,
- знание планиметрии.
Критерии оценивания
Вторая часть профильной математики ЕГЭ весит 24 первичных балла из 32 возможных:
Для получения балла за № 9-12 необходимо записать правильный ответ в бланк, решение номера не рассматривается, однако по сложности это все же вторая часть профильной математики ЕГЭ.
В №13 балл могут дать за написание верного ответа или верного хода решения при неверном ответе.
В №14 балл дадут за решение одного из двух пунктов.
В №15 балл дадут за вычислительную ошибку или неверное исключение точки.
В №16 можно получить баллы за решение одного из пунктов: более сложного (2 балла) или более простого (1 балл).
В №17 баллы дают за верную математическую модель: два — за доведенное до конца решение с вычислительной ошибкой или недостаточным обоснованием, один — за не доведенное до конца решение.
В №18 три балла можно получить, если назвать два верных решения (и два неверных или недостаточно их обосновать), два балла за одно верное решение и один балл за верный ход мысли.
В №19 три балла дадут за три верных ответа, два — за два, один — за один (с обоснованием, если решение легкое).
Как решать вторую часть ЕГЭ по профильной математике
Вторая часть профильной математики ЕГЭ требует углубленных знаний в области дисциплины. При этом, каждый номер направлен на отработку каких-то конкретных знаний и навыков. Поэтому готовиться стоит к каждому номеру отдельно.
Задание 9
Задание №9 — это проверка простейших вычислений, для которых необходимо знать свойства логарифмов, тригонометрических функций, корней и степеней. Чтобы решить этот номер, можно воспользоваться приложенным к КИМ списком формул. Заранее стоит научиться выводить из них другие полезные формулы, это избавит от лишнего заучивания и поможет подготовиться к решению более сложных задач.
Задание 10
Вторая часть профильной математики ЕГЭ включает также задачу прикладного характера с формулой для ее решения. Нужно проследить, чтобы все значения измерялись однотипно (все время в секундах, например), а переменные представлялись в общем виде. Также лучше попробовать сократить выражение, если это возможно: так можно исключить вычислительную ошибку при подставлении.
Обязательно следует перепроверять свое решение.
Задание 11
В №11 может встретиться задача на один из шести типов. Решение любой из этих типов задач начинается с составления уравнения: искомая величина — Х. Оно чаще всего выходит линейным или квадратным. Для составления уравнения стоит пользоваться основными формулами: пути, работы и концентрации.
Задание 12
Для подготовки к заданию на точки экстремумов необходимо изучить таблицу основных производных и их графики, а также их свойства. Помимо этого, стоит попрактиковаться в нахождении нулей производных. Они помогут определить все точки экстремумов, из которых можно будет найти наибольшее и наименьшее значения функций.
Задание 13
Задание № 13, с которого начинается настоящая (с проверкой решения) вторая часть профильной математики ЕГЭ, проверяет умение выпускников ориентироваться в тригонометрии. Чтобы выполнить этот номер на максимум, необходимо, во-первых, найти ОДЗ, а во-вторых, с ее учетом решить полученное уравнение. Для этого может пригодится огромное количество формул и свойств, запомнить которые поможет мнемотехника. Так, одним из полезный упражнений на запоминание будет правило лошади: если она качает головой по вертикали, получается кивок — «да», поэтому вдоль оси ординат функция меняется; а вот качание головой по горизонтали, это «нет», функция не меняется.
Задание 14
№14 содержит два задания: на доказательство и вычисление. С первым могут помочь теорема Фалеса и подобие треугольников, а в последнем очень выручают теоремы синусов и косинусов, Пифагора, о трех перпендикулярах и тригонометрические функции в частности.
Задание 15
Неравенства задания №15 решаются благодаря постоянности логарифмической функции. От изменчивого основания можно избавиться, если перейти к новому постоянному основанию. Отдельное внимание стоит уделить ОДЗ, которое может меняться.
При решении важно помнить про методы интервалов и рационализации, правила замены тригонометрических функций.
Задание 16
Лучше запомнить все теоремы, свойства и аксиомы, связанные с треугольниками, так как они содержатся в любой фигуре и, соответственно, будут полезны при решении любого номера, который содержит вторая часть профильной математики ЕГЭ. Также особое внимание в №16 следует уделить рисунку: он должен быть наглядным, содержать необходимые пометки. Это поможет в решении любой задачи по планиметрии.
Задание 17
Вторая часть профильной математики ЕГЭ под видом №17 может предложить три типа задач:
Для их решения следует постепенно преобразовывать каждое условие задачи в уравнение или его часть. При подготовке следует заранее ознакомиться со схемами кредитования (дифференцированные и аннуитетные платежи), к задаче на оптимизацию нужно будет попрактиковаться в работе с целевыми функциями с точками экстремумов.
Задание 18
Этот номер проверяет умение мыслить логически и составлять схему рассуждений. Каждая из задач под этим номером нестандартна, поэтому помочь в их решении может только регулярная практика по вариантам прошлых лет. Однако стоит отметить, что в задании допустимо и графическое решение: так, в уравнениях с двумя переменными часто прячутся фигуры, которые могут оказаться ответом на задание.
Задание 19
№19 — последний, который включает вторая часть профильной математики ЕГЭ. Это задание олимпиадного уровня, поэтому оно требует нестандартного мышления. Для подготовки к нему можно изучить признаки делимости чисел (четное окончание как признак деления на «2» — это недостаточно для экзамена), а также формулы арифметической и геометрической прогрессий. Отлично помогут также решение заданий из вариантов прошлых лет, разборы олимпиадных заданий похожего типа.
Таким образом, видно, что вторая часть профильной математики ЕГЭ — это действительно сложные задачи, решить которые под силу не каждому выпускнику. Поэтому для того, чтобы сдать экзамен на 85+ баллов, необходимо усердно готовиться.
Источник
Уравнения, часть С
Теория к заданию 13 из ЕГЭ по математике (профильной)
Уравнения, часть $С$
Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Схема решения сложных уравнений:
- Перед решением уравнения надо для него записать область допустимых значений (ОДЗ).
- Решить уравнение.
- Выбрать из полученных корней уравнения то, которые удовлетворяют ОДЗ.
ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
1. Выражение, стоящее в знаменателе, не должно равняться нулю.
2. Подкоренное выражение, должно быть не отрицательным.
3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.
4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.
Логарифмические уравнения
Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.
1. Для любых действительных чисел $m$ и $n$ справедливы равенства:
2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.
3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию
4. При умножении двух логарифмов можно поменять местами их основания
6. Формула перехода к новому основанию
7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение
Можно выделить несколько основных видов логарифмических уравнений:
Представим обе части уравнения в виде логарифма по основанию $2$
Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.
Т.к. основания одинаковые, то приравниваем подлогарифмические выражения
Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые
Проверим найденные корни по условиям $\table\<\ x^2-3x-5>0;\ 7-2x>0;$
При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень
В данном методе надо:
Решите уравнение $log_<2>√x+2log_<√x>2-3=0$
1. Запишем ОДЗ уравнения:
$\table\<\ х>0,\text»так как стоит под знаком корня и логарифма»;\ √х≠1→х≠1;$
2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:
3. Далее сделаем замену переменной $log_<2>√x=t$
4. Получим дробно — рациональное уравнение относительно переменной t
Приведем все слагаемые к общему знаменателю $t$.
Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
5. Решим полученное квадратное уравнение по теореме Виета:
6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:
Прологарифмируем правые части уравнений
Приравняем подлогарифмические выражения
Чтобы избавиться от корня, возведем обе части уравнения в квадрат
7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.
Первый корень удовлетворяет ОДЗ.
$\<\table\ 16 >0; \16≠1;$ Второй корень тоже удовлетворяет ОДЗ.
Дробно рациональные уравнения
- Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
- Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.
Чтобы решить дробно рациональное уравнение, необходимо:
- Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
- Найти общий знаменатель дробей, входящих в уравнение;
- Умножить обе части уравнения на общий знаменатель;
- Решить получившееся целое уравнение;
- Исключить из его корней те, которые не удовлетворяют условию ОДЗ.
- Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения.
Показательные уравнения
Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.
При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются
3. При возведении степени в степень основание остается прежним, а показатели перемножаются
4. При возведении в степень произведения в эту степень возводится каждый множитель
5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
6. При возведении любого основания в нулевой показатель степени результат равен единице
7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби
8. Радикал (корень) можно представить в виде степени с дробным показателем
Виды показательных уравнений:
1. Простые показательные уравнения:
а) Вида $a^
b) Уравнение вида $a^
Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается
2. Метод уравнивания оснований.
3. Метод разложения на множители и замены переменной.
- Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^
$. - Сделать замену переменной $a^
=t, t > 0$. - Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
- Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^
=t$, решаем его и результат записываем в ответ.
По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.
Сделаем замену переменной $2^x=t; t>0$
Получаем кубическое уравнение вида
Умножим все уравнение на $2$, чтобы избавиться от знаменателей
Разложим левую часть уравнения методом группировки
Вынесем из первой скобки общий множитель $2$, из второй $7t$
Дополнительно в первой скобке видим формулу разность кубов
Далее скобку $(t-1)$ как общий множитель вынесем вперед
Произведение равно нулю, когда хотя бы один из множителей равен нулю
Решим первое уравнение
Решим второе уравнение через дискриминант
Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения
4. Метод преобразования в квадратное уравнение
- Имеем уравнение вида $А·a^<2f(x)>+В·a^
+С=0$, где $А, В$ и $С$ — коэффициенты. - Делаем замену $a^
=t, t > 0$. - Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
- Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^
=t$, решаем его и результат записываем в ответ.
Способы разложения на множители:
- Вынесение общего множителя за скобки.
Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:
- Определить общий множитель.
- Разделить на него данный многочлен.
- Записать произведение общего множителя и полученного частного (заключив это частное в скобки).
Разложить на множители многочлен: $10a^<3>b-8a^<2>b^2+2a$.
Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:
Это и есть конечный результат разложения на множители.
Применение формул сокращенного умножения
1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.
2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.
3. Разность квадратов раскладывается на произведение разности чисел и их сумму.
4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.
5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.
6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.
7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.
Метод группировки
Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.
Разложить многочлен на множители $2a^3-a^2+4a-2$
Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками.
Далее из каждой группы вынесем общий множитель
После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.
Произведение данных скобок — это конечный результат разложения на множители.
С помощью формулы квадратного трехчлена.
Если имеется квадратный трехчлен вида $ax^2+bx+c$, то его можно разложить по формуле
$ax^2+bx+c=a(x-x_1)(x-x_2)$, где $x_1$ и $x_2$ — корни квадратного трехчлена
Источник