Способы решения неопределенностей пределов

Основные неопределенности пределов и их раскрытие.

С непосредственным вычислением пределов основных элементарных функций разобрались.

При переходе к функциям более сложного вида мы обязательно столкнемся с появлением выражений, значение которых не определено. Такие выражения называют неопределенностями.

Перечислим все основные виды неопределенностей: ноль делить на ноль ( 0 на 0 ), бесконечность делить на бесконечность , ноль умножить на бесконечность , бесконечность минус бесконечность , единица в степени бесконечность , ноль в степени ноль , бесконечность в степени ноль .

ВСЕ ДРУГИЕ ВЫРАЖЕНИЯ НЕОПРЕДЕЛЕННОСТЯМИ НЕ ЯВЛЯЮТСЯ И ПРИНИМАЮТ ВПОЛНЕ КОНКРЕТНОЕ КОНЕЧНОЕ ИЛИ БЕСКОНЕЧНОЕ ЗНАЧЕНИЕ.

Раскрывать неопределенности позволяет:

  • упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения, тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.);
  • использование замечательных пределов;
  • применение правила Лопиталя;
  • использование замены бесконечно малого выражения ему эквивалентным (использование таблицы эквивалентных бесконечно малых).

Сгруппируем неопределенности в таблицу неопределенностей. Каждому виду неопределенности поставим в соответствие метод ее раскрытия (метод нахождения предела).

Эта таблица вместе с таблицей пределов основных элементарных функций будут Вашими главными инструментами при нахождении любых пределов.

Приведем парочку примеров, когда все сразу получается после подстановки значения и неопределенности не возникают.

Вычислить предел

Подставляем значение:

И сразу получили ответ.

Вычислить предел

Подставляем значение х=0 в основание нашей показательно степенной функции:

То есть, предел можно переписать в виде

Теперь займемся показателем. Это есть степенная функция . Обратимся к таблице пределов для степенных функций с отрицательным показателем. Оттуда имеем и , следовательно, можно записать .

Исходя из этого, наш предел запишется в виде:

Вновь обращаемся к таблице пределов, но уже для показательных функций с основанием большим единицы, откуда имеем:

Разберем на примерах с подробными решениями раскрытие неопределенностей преобразованием выражений.

Очень часто выражение под знаком предела нужно немного преобразовать, чтобы избавиться от неопределенностей.

Вычислить предел

Подставляем значение:

Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения. Пробуем упростить выражение.

После преобразования неопределенность раскрылась.

Вычислить предел

Подставляем значение:

Пришли к неопределенности ( 0 на 0 ). Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Домножим и числитель и знаменатель на выражение, сопряженное знаменателю.

Для знаменателя сопряженным выражением будет

Знаменатель мы домножали для того, чтобы можно было применить формулу сокращенного умножения – разность квадратов и затем сократить полученное выражение.

Читайте также:  Мексидол дозы таблетки способ применения

После ряда преобразований неопределенность исчезла.

ЗАМЕЧАНИЕ: для пределов подобного вида способ домножения на сопряженные выражения является типичным, так что смело пользуйтесь.

Вычислить предел

Подставляем значение:

Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Так как и числитель и знаменатель обращаются в ноль при х=1 , то если разложить на множители эти выражения, можно будет сократить (х-1) и неопределенность исчезнет.

Разложим числитель на множители:

Разложим знаменатель на множители:

Наш предел примет вид:

После преобразования неопределенность раскрылась.

Рассмотрим пределы на бесконечности от степенных выражений. Если показатели степенного выражения положительны, то предел на бесконечности бесконечен. Причем основное значение имеет наибольшая степень, остальные можно отбрасывать.

Пример.

Пример.

Если выражение под знаком предела представляет собой дробь, причем и числитель и знаменатель есть степенные выражения ( m – степень числителя, а n – степень знаменателя), то при возникает неопределенность вида бесконечность на бесконечность , в этом случае неопределенность раскрывается делением и числитель и знаменатель на

Вычислить предел


Степень числителя равна семи, то есть m=7 . Степень знаменателя также равна семи n=7 . Разделим и числитель и знаменатель на .

Источник

Методы вычисления пределов функций и раскрытия неопределенностей

Здесь мы применим теорию к решению задач на вычисление пределов. Теория изложена в разделах «Предел последовательности», «Предел функции» и «Непрерывность функции».
Далее изложены приемы и методы вычисления пределов.

Известные пределы

Пределы с непрерывными функциями

Если функция f непрерывна в конечной точке , то
.
См. «Определение непрерывности». Элементарные функции: , и обратные к ним, непрерывны на своих областях определения.

Пределы с показательной и степенной функциями

Следующие пределы следуют из свойств показательной и степенной функций.
При : , , , .
При : , , , .
При : , , , .
При : , , , .

Замечательные пределы

Применение замены переменной

Если функцию можно представить в виде сложной:
,
то можно попытаться упростить процесс вычисления предела , выполняя замену переменной. Для этого мы вычисляем предел
.
Здесь может быть конечным числом , либо одним из символов: .
Если является конечным числом и функция непрерывна в точке , то
.

Если функция не является непрерывной в , то мы должны вычислить предел
.
Если он существует, и при этом существует такая проколотая окрестность точки , на которой
при ,
то существует исходный предел
.
См. «Замена переменной при решении пределов».

Арифметические свойства предела функции

Если существуют конечные пределы , , то существуют пределы суммы, разности и произведения функций:
, , .
Если , то существует предел частного:
.

Аналогичные свойства имеют место и для бесконечно больших и бесконечно малых функций. Они изложены на странице «Бесконечно малые и бесконечно большие функции». При вычислении таких пределов выполняются следующие правила:
; ;
; ;
; ; ;
;
;
; ; .
Пусть a – произвольное действительное число. Тогда
; ;
; ; ; .
Пусть a > 0 . Тогда
; ; .
Пусть a . Тогда
; .

Эти правила применяются следующим образом. Пусть, например , , где – конечное положительное число. Тогда
;
;
;
.
В последнем случае, если это не промежуточное вычисление, можно опустить знак у нуля:
.

Читайте также:  Способ расчета среднего заработка

Неопределенности

Применение только арифметические свойств пределов не всегда приводит к результату, если в состав исследуемого выражения входят бесконечно большие и бесконечно малые функции. Следующие операции не определены:
; ; ; ;
; ; ;
; ; ; ;
.
Это, так называемые неопределенности. В этих случаях арифметических свойств не достаточно и, для вычисления величины предела, нужно выполнять преобразования, чтобы привести их к известным пределам. Такой процесс называется раскрытием неопределенности.

Выполняя преобразования, можно от неопределенности одного вида переходить к неопределенности другого вида. Последние три неопределенности сводятся к логарифмированием. Например так:
.
То есть мы от неопределенности перешли к . Далее ее можно свести к неопределенностям вида или :
; .
К неопределенности сводится и неопределенность . Покажем это. Пусть и . Тогда
.

Далее излагаются методы раскрытия неопределенностей.

Раскрытие неопределенностей с дробями

При вычислении пределов с дробями, мы используем следующее свойство.
Если значения функции изменить (или сделать неопределенными) в конечном числе точек , то это изменение никак не повлияет на существование и величину предела в произвольной точке .
См. «Влияние значений функции в конечном числе точек на величину предела».

Для примера рассмотрим следующую функцию:
,
где – функция, непрерывная в . Функции f и g отличаются только в одной точке : не определена в этой точке, а – определена и непрерывна. Тогда, согласно приведенному свойству, пределы этих функций в любой точке равны. Поэтому
.

То есть, при вычислении пределов от дробей, числитель и знаменатель можно умножать и делить на конечное число равных сомножителей. В результате таких действий, мы можем получить другую функцию, область определения которой может отличаться от исходной. Но, поскольку это изменение затрагивает только конечное число точек, то это никак не повлияет на существование и величину предела.

Дроби из многочленов

Пусть нам нужно вычислить предел от дроби из многочленов:
.
При , числитель и знаменатель стремятся к бесконечности. Мы имеем неопределенность вида . Для ее раскрытия, разделим числитель и знаменатель на :
.
Далее применяем арифметические свойства пределов функции. Поскольку , то
.

Пусть теперь x стремится к конечному числу x 0 : x → x 0 . Если возникает неопределенность вида 0/0 , то многочлены в числителе и знаменателе необходимо разделить на x – x 0 . Например,
.

Дроби с корнями

При вычислении пределов дробей с корнями, часто бывают полезными следующие формулы:
,
,
,
. . . . . . . . . . . .
.

Например, пусть требуется вычислить предел
.
При . Мы имеем неопределенность вида . Применим вторую формулу. Подставим :
.
Отсюда
;
;
.

Подобный прием также применяется и для раскрытия некоторых неопределенностей вида . Например:
.

Сравнение функций. О большое и о малое

Говорят, что функция f ограничена относительно функции g при x → x 0 , пишут
при ,
если функции f и g определены на некоторой проколотой окрестности точки и существует такое число C , что на этой окрестности выполняется неравенство:
.
Здесь . Окрестность может быть как двусторонней, так и односторонней. В последнем случае пишут или .

Читайте также:  Оформи цитату следующими способами

Функции f и g называются функциями одного порядка при , пишут
при ,
если и при .

Функция α называется бесконечно малой по сравнению с функцией f при , пишут
при ,
если на некоторой проколотой окрестности точки ,
при , причем
.

Если, в предыдущем определении, f является бесконечно малой функцией при , то говорят, что является бесконечно малой более высокого порядка, чем f при .

Эквивалентные функции

Здесь и далее – конечная или бесконечно удаленная ( ) точка: .

Функции f и g называются эквивалентными (асимптотически равными) при , пишут
при ,
если на некоторой проколотой окрестности точки ,
при , причем
.

Если, при , , то .
Если, при , и , то .
Если , то при .
Если , то при .
Если на некоторой проколотой окрестности точки ,
и , то
.

Если, при , и и существует предел
, то существует и предел
(э.1) .

В более общем случае, если при , , то
(э.1) .
Знак равенства означает, что если существует один из этих пределов, то существует и равный ему второй. Если не существует один из пределов, то не существует и второй.

Приводим список часто применяющихся эквивалентных функций при :

;
.
Таким образом применение эквивалентных функций, в ряде случаев, позволяет заменить функцию за знаком предела на более простую и упростить вычисление предела. Подчеркнем, что речь идет только о пределах вида (э.1). Для пределов функций других видов такая замена может привести к ошибкам.
См. «О большое и о малое. Сравнение функций», «Применение эквивалентных функций при решении пределов».

Разложение в степенной ряд

Одним из самых мощных методов раскрытия неопределенности в конечной точке является разложение функций в степенной ряд. Далее приводим разложения элементарных функций при .

Пример. Пусть нам требуется найти предел
.
Разложим числитель и знаменатель в степенной ряд, в окрестности точки , и находим предел:
;
;
.

Правило Лопиталя

Теорема о раскрытии неопределенности 0/0
Пусть функции f и g непрерывны и имеют производные в проколотой (двусторонней или односторонней) окрестности конечной или бесконечно удаленной ( ) точки , причем и не равны нулю в этой окрестности. И пусть
.
Тогда, если существует конечный или бесконечный предел
,
то существует равный ему предел
.
Здесь для двусторонней окрестности. Для односторонней окрестности, , или .

Теорема о раскрытии неопределенности ∞/∞
Пусть функции f и g непрерывны и имеют производные в проколотой (двусторонней или односторонней) окрестности конечной или бесконечно удаленной ( ) точки , причем не равна нулю в этой окрестности. И пусть
.
Тогда, если существует конечный или бесконечный предел
,
то существует равный ему предел
.
Здесь для двусторонней окрестности. Для односторонней окрестности, , или .

Вычислим предыдущий предел, используя правило Лопиталя.

.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Автор: Олег Одинцов . Опубликовано: 12-01-2019 Изменено: 13-05-2021

Источник

Оцените статью
Разные способы