- Способы решения логических задач с примерами
- Метод первый: Метод рассуждений
- Идея метода состоит в том, что мы проводим рассуждения, используя последовательно все условия задачи, и приходим к выводу, который и будет являться ответом задачи. Этим способом обычно решают несложные логические задачи.
- Ответ: Сергей изучает китайский язык, Михаил — японский, Вадим — арабский .
- Учитель информатики
- Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
- Логические задачи и способы их решения
- 22.1. Метод рассуждений
- 22.2. Задачи о рыцарях и лжецах
- 22.3. Задачи на сопоставление. Табличный метод
- 22.4. Использование таблиц истинности для решения логических задач
- 22.5. Решение логических задач путём упрощения логических выражений
- САМОЕ ГЛАВНОЕ
- Вопросы и задания
Способы решения логических задач с примерами
Из анализа специальной литературы мы выделяем несколько различных способов решения логических задач:
- Метод рассуждений;
- Метод таблиц;
- Метод блок-схем;
- Метод графов;
- Метод кругов Эйлера.
Остановимся отдельно на каждом из выделенных методов, иллюстрируя их примерами решения конкретных задач.
Метод первый: Метод рассуждений
Идея метода состоит в том, что мы проводим рассуждения, используя последовательно все условия задачи, и приходим к выводу, который и будет являться ответом задачи. Этим способом обычно решают несложные логические задачи.
Например. Возраст мамы и дочки в сумме составляет 98 лет. Дочь родилась, когда маме было 22 года. Сколько лет маме и дочке? Решение: так как разница в их возрасте 22 года (именно в этом возрасте у мамы родилась дочь), то 98 – 22 =76 (лет). Это удвоенный возраст дочери, тогда 76 : 2 = 38(лет). Значит, матери 98 – 38 = 60 (лет).
Задача 1. Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: «Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский». Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?
Решение: Имеется три утверждения. Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно. Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно. Остается считать верным третье утверждение, а первое и второе — ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей.
Ответ: Сергей изучает китайский язык, Михаил — японский, Вадим — арабский .
Метод второй: Метод таблиц
Основной прием, который используется при решении текстовых логических задач, заключается в построении таблиц. Таблицы не только позволяют наглядно представить условие задачи или ее ответ, но в значительной степени помогают делать правильные логические выводы в ходе решения задачи. [5]
Идея метода: оформлять результаты логических рассуждений в виде таблицы.
2)возможность контролировать процесс рассуждений;
3)возможность формализовать некоторые логические рассуждения.
Задача 2 . Данным способом можно решить, известную многим загадку Эйнштейна.
5 разных человек в 5 разных домах разного цвета, курят 5 разных марок сигарет, выращивают 5 разных видов животных, пьют 5 разных видов напитков.
Вопрос:1) Кто выращивает рыбок?
2)Норвежец живет в первом доме.
3)Англичанин живет в красном доме.
4)Зеленый дом находится непосредственно слева от белого.
5)Датчанин пьет чай.
6)Тот, кто курит Rothmans, живет рядом с тем, кто выращивает кошек.
7)Тот, кто живет в желтом доме, курит Dunhill.
8)Немец курит Marlboro.
9)Тот, кто живет в центре, пьет молоко.
10)Сосед того, кто курит Rothmans, пьет воду.
11)Тот, кто курит Pall Mall, выращивает птиц.
12)Швед выращивает собак.
13)Норвежец живет рядом с синим домом.
14)Тот, кто выращивает лошадей, живет в синем доме.
15)Тот, кто курит Philip Morris, пьет пиво.
16)В зеленом доме пьют кофе.
Метод третий: Метод блок-схем
Этот метод используют в основном для задач, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости, а также задачи, связанные с операцией взвешивания на чашечных весах. Простейший прием решения задач этого класса состоит в переборе возможных вариантов. Понятно, что такой метод решения не совсем удачный, в нем трудно выделить какой-либо общий подход к решению других подобных задач.
Более систематический подход к решению задач «на переливание» заключается в использовании блок-схем. Суть этого метода состоит в следующем. Сначала выделяются операции, которые позволяют нам точно отмерять жидкость. Эти операции называются командами. Затем устанавливается последовательность выполнения выделенных команд. Эта последовательность оформляется в виде схемы. Подобные схемы называются блок-схемами и широко используются в программировании. Составленная блок-схема является программой, выполнение которой может привести нас к решению поставленной задачи. Для этого достаточно отмечать, какие количества жидкости удается получить при работе составленной программы. При этом обычно заполняют отдельную таблицу, в которую заносят количество жидкости в каждом из имеющихся сосудов. [4]
Идея метода: описать последовательность выполнения операций, определить порядок их выполнения и фиксировать состояния.
Задача 3 . Имеются два сосуда — трехлитровый и пятилитровый. Нужно, пользуясь этими сосудами, получить 1, 2, 3, 4, 5, 6, 7 и 8 литров воды. В нашем распоряжении водопроводный кран и раковина, куда можно выливать воду.
Решение. Перечислим все возможные операции, которые могут быть использованы нами, и введем для них следующие сокращенные обозначения: НБ — наполнить больший сосуд водой из-под крана; НМ — наполнить меньший сосуд водой из-под крана; ОБ — опорожнить больший сосуд, вылив воду в раковину; ОМ — опорожнить меньший сосуд, вылив воду в раковину; Б→М — перелить из большего в меньший, пока больший сосуд не опустеет или меньший сосуд не наполнится; М→Б — перелить из меньшего в больший, пока меньший сосуд не опустеет или больший сосуд не наполнится. Выделим среди перечисленных команд только три: НБ, Б→М, ОМ. Кроме этих трех команд рассмотрим еще две вспомогательные команды: Б = 0 ? — посмотреть, пуст ли больший сосуд; М = З ? — посмотреть, наполнен ли малый сосуд.
В зависимости от результатов этого осмотра мы переходим к выполнению следующей команды по одному из двух ключей — «да» или «нет». Такие команды в программировании принято называть командами «условного перехода» и изображать в блок-схемах в виде ромбика с двумя ключами-выходами.
Договоримся теперь о последовательности выполнения выделенных команд. После Б→М будем выполнять ОМ всякий раз, как меньший сосуд оказывается наполненным, и НБ всякий раз, как больший сосуд будет опорожнен. Последовательность команд изобразим в виде блок-схемы.
Начнем выполнение программы. Будем фиксировать, как меняется количество воды в сосудах, если действовать по приведенной схеме. Результаты оформим в виде таблицы.
Дальше эта последовательность будет полностью повторяться. Из таблицы видим, что количество воды в обоих сосудах вместе образует следующую последовательность: 0, 5, 2, 7, 4, 1, 6, 3, 0 и т.д. Таким образом, действуя по приведенной схеме, можно отмерить любое количество литров от 1 до 7. Чтобы отмерить еще и 8 литров, надо наполнить оба сосуда.
Метод четвертый: метод графов.
Граф — множество точек, изображенных на плоскости (листе бумаги, доске), некоторые пары из которых соединены отрезками. Точки называют вершинами графов, а отрезки — ребрами графов. Выделяя из словесных рассуждений главное — объекты и отношения между ними, графы представляют изучаемые факты в наглядной форме.
Примеры решения логических задач с использованием графов подкупают своей наглядностью и простотой, избавляют от лишних рассуждений, во многих случаях сокращают нагрузку на память. С одной стороны, графы позволяют проследить все логические возможности изучаемой ситуации, с другой, благодаря своей обозримости, помогают в ходе решения задачи классифицировать логические возможности, отбрасывать неподходящие случаи, не доводя до полного перебора всех случаев.
Идея метода: выявление и последовательное исключение логических возможностей, задаваемых условиями задачи.
Задача 4. Три ученицы — Аня, Варя и Клава — на первомайской демонстрации были: одна в красном, другая в белом, третья в синем платье. В высказывании: Аня была в красном платье, Варя не в красном, Клава не в синем — одна часть верна, а две неверны. В каком платье была каждая из учениц?
Решение: Будем исходить из двух возможностей: Аня была в красном платье (Ак) и Аня была не в красном (то есть в белом или синем) и изобразим эти возможности: первую ребром Ак, а вторую двумя ребрами Ас и Аб, исходящими из одной точки. Если Аня была в красном платье, то в синем могла быть или Варя, или Клава. Поэтому к ребру Ак присоединим 2 ребра Вс и Кс. Путь АкВс закончим Кб, а путь АкКс закончим Вб. Но из двух получившихся путей условию задачи ни один не удовлетворяет.
Обратимся ко второй возможности. К ребру Ас присоединим два ребра Вк и Кк, так как в красном платье в этом случае могла быть Варя или Клава. Такие же два ребра присоединим к Аб. Закончить каждый из получившихся путей очень просто: нужно присоединить последовательно ребра Кб, Вб, Кс и Вс. Имеем четыре логические возможности, но условию задачи удовлетворяет лишь путь АсВкКб, а остальные три пути — не удовлетворяют. Значит, Аня была в синем платье, Варя — в красном, а Клава—в белом.
Метод пятый: метод кругов Эйлера.
Упростить решение многих логических задач помогают так называемые круги Эйлера, с помощью которых можно изобразить множество элементов, обладающих определенным свойством. Круги Эйлера — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления.
Тип задач: Метод кругов Эйлера позволяет графически решать математические задачи, основанные на применении теории множеств.
Формальный способ решения подобных задач:
1. Выделить в тексте задачи рассматриваемые свойства объектов.
2. Заполнить круги Эйлера-Венна, проанализировав соответствие объектов и присущих им свойств.
3. Выбрать решение – набор значений простых высказываний, при котором соответствие объектов и свойств является истинным.
4. Проверить, удовлетворяет ли полученное решение условию задачи.
Преимущества и недостатки данного способа:
Необязательность знания формул и законов алгебры логики
Не подходит для решения сложных задач
Не обладает универсальностью, т.е. предназначен для определенного класса задач
Задача 5 . Каждый из 35 шестиклассников является читателем, по крайней мере, одной из двух библиотек: школьной и районной. Из них 25 человек берут книги в школьной библиотеке, 20 – в районной.
1.Являются читателями обеих библиотек;
2. Не являются читателями районной библиотеки;
3. Не являются читателями школьной библиотеки;
4. Являются читателями только районной библиотеки;
5. Являются читателями только школьной библиотеки?
Решение: Заметим, что первый вопрос является ключевым для понимания и решения данной задачи. Ведь не сразу сообразишь, как получается 20 + 25 = 45 из 35. В первом вопросе звучит подсказка к пониманию условия: есть ученики, которые посещают обе библиотеки. А если условие задачи изобразить на схеме, то ответ на первый вопрос становится очевидным.
1. 20 + 25 – 35 = 10 (человек) – являются читателями обеих библиотек. На схеме это общая часть кругов. Мы определили единственную неизвестную нам величину. Теперь, глядя на схему, легко даем ответы на поставленные вопросы.
2. 35 – 20 = 15 (человек) – не являются читателями районной библиотеки. (На схеме левая часть левого круга)
3. 35 – 25 = 10 (человек) – не являются читателями школьной библиотеки. (На схеме правая часть правого круга)
4. 35 – 25 = 10 (человек) – являются читателями только районной библиотеки. (На схеме правая часть правого круга)
5. 35 – 20 = 15 (человек) – являются читателями только школьной библиотеки. (На схеме левая часть левого круга).
Очевидно, что 2 и 5, а также 3 и 4 – равнозначны и ответы на них совпадают.
Источник
Учитель информатики
Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
Логические задачи и способы их решения
Информатика. 10 класса. Босова Л.Л. Оглавление
§ 22. Логические задачи и способы их решения
Исходными данными в логических задачах являются высказывания. При этом высказывания и взаимосвязи между ними бывают так сложны, что разобраться в них без использования специальных методов бывает достаточно трудно.
22.1. Метод рассуждений
Основная идея этого метода состоит в том, чтобы последовательно анализировать всю информацию, имеющуюся в задаче, и делать на этой основе выводы.
Пример 1. На одной улице стоят в ряд 4 дома, в каждом из них живёт по одному человеку. Их зовут Василий, Семён, Геннадий и Иван. Известно, что все они имеют разные профессии: скрипач, столяр, охотник и врач. Известно, что:
1) столяр живёт правее охотника;
2) врач живёт левее охотника;
3) скрипач живёт с краю;
4) скрипач живёт рядом с врачом;
5) Семён не скрипач и не живёт рядом со скрипачом;
6) Иван живёт рядом с охотником;
7) Василий живёт правее врача;
8) Василий живёт через дом от Ивана.
Определим, кто где живёт.
Изобразим дома прямоугольниками и пронумеруем их:
Известно, что скрипач живёт с краю (3). Следовательно, он может жить в доме 1 или в доме 4.
Скрипач живёт рядом с врачом (4), т. е. врач может жить правее (дом 2) или левее (дом 3) скрипача.
Но врач живёт левее охотника (2), следовательно, скрипач не может жить в доме 4, т. к. в противном случае получится, что врач, живущий с ним рядом, живёт правее охотника, а это противоречит условию (2). Таким образом, скрипач живёт в доме 1, а врач — рядом с ним, в доме 2.
Так как врач живёт левее охотника (2), а столяр — правее охотника (1), то охотнику достаётся дом 3, а столяру — дом 4.
Так как Семён не скрипач и не живёт рядом со скрипачом (5), то он может жить в доме 3 или в доме 4.
Так как Иван живёт рядом с охотником (6), то он может жить в доме 2 или 4.
Так как Василий живёт правее врача (7), то он может жить в доме 3 или 4.
Подводим итоги с учётом того, что Василий живёт через дом от Ивана (8): в доме 1 может жить только Геннадий, в доме 2 — Иван, в доме 4 — Василий, в доме 3 — Семён.
Как видите, далеко не самая сложная задача потребовала достаточно серьёзных рассуждений. Этот метод, как правило, применяется для решения простых задач.
22.2. Задачи о рыцарях и лжецах
Задачи о рыцарях и лжецах — это такой класс логических задач, в которых фигурируют персонажи:
• рыцарь — человек, всегда говорящий правду;
• лжец — человек, всегда говорящий ложь;
• обычный человек — человек, который в одних ситуациях может говорить правду, а в других — лгать.
Решение подобных задач сводится к перебору вариантов и исключению тех из них, которые приводят к противоречию.
Пример 2. Двое жителей острова А и В разговаривали между собой в саду. Проходивший мимо незнакомец спросил у А: «Вы рыцарь или лжец?». Тот ответил, но так неразборчиво, что незнакомец не смог ничего понять. Тогда незнакомец спросил у В: «Что сказал А?». «А сказал, что он лжец», — ответил В. Может ли незнакомец доверять ответу Б? Мог ли А сказать, что он лжец?
Если А — рыцарь, то он скажет правду и сообщит, что он рыцарь.
Если А — лжец, то он скроет правду и сообщит, что он рыцарь.
Это значит, что В, утверждающий, что «А сказал, что он лжец» заведомо лжёт; он — лжец. Определить же, кем является А, в данной ситуации невозможно.
Пример 3. Рядом стоят два города: город Лжецов (Л) и город Правдивых (П). В городе Лжецов живут лжецы, а в городе Правдивых — правдивые люди. Лжецы всегда лгут, а правдивые — всегда говорят правду. Лжецы и правдивые ходят друг к другу в гости.
Вы попали в один из городов, а в какой не знаете. Вам нужно у первого встречного, задав простой вопрос, узнать, в каком вы городе. Ответом на вопрос может быть только «Да» или « Нет ».
Нужен простой вопрос, ответ на который точно известен вашему респонденту. Например: «Вы находитесь в своём городе?».
Надо задать вопрос и проанализировать варианты ответов с учетом того, кто их мог дать.
Самостоятельно разберитесь с решением задачи, рассмотрев блок-схему на рис. 4.12.
Рис. 4.12. Блок-схема для анализа ответов
Пример 4. Перед нами три человека: А, В и С. Один из них рыцарь, другой — лжец, третий — нормальный человек. При этом неизвестно, кто есть кто. Эти люди утверждают следующее:
1) А: я нормальный человек;
2) В: это правда;
3) С: я не нормальный человек.
Кто такие А, В и С?
Для решения этой задачи следует рассмотреть все возможные варианты распределения ролей.
Начнём с А. Он может быть рыцарем (Р), лжецом (Л) или нормальным человеком (Н). Если А — рыцарь, то В может быть лжецом или нормальным человеком и т. д. Представим все варианты распределения ролей в таблице:
Проанализируем имеющиеся три утверждения, считая, что роли между А, В и С распределены в соответствии с первой строкой таблицы.
Итак, А утверждает, что он нормальный человек (1). Но, согласно первой строке таблицы, — он рыцарь, который не может так о себе сказать. Получено противоречие. Следовательно, первая строка не удовлетворяет условию задачи.
Самостоятельно проанализируйте оставшиеся строки таблицы и дайте ответ на вопрос, поставленный в задаче.
22.3. Задачи на сопоставление. Табличный метод
Многие логические задачи связаны с рассмотрением нескольких конечных множеств и связей между их элементами. Для решения таких задач зачастую прибегают к помощи таблиц или графов. От того, насколько удачно выбрана их структура, во многом зависит успешность решения задачи.
Пример 5. В летнем лагере в одной палатке жили Алёша, Боря, Витя и Гриша. Все они разного возраста, учатся в разных классах (с 7-го по 10-й) и занимаются в разных кружках: математическом, авиамодельном, шахматном и фотокружке. Выяснилось, что фотограф старше Гриши, Алёша старше Вити, а шахматист старше Алёши. В воскресенье Алёша с фотографом играли в теннис, а Гриша в то же время проиграл авиамоделисту в городки.
Определим, кто в каком кружке занимается.
В этой задаче речь идёт о высказывательной форме (предикате) вида «Ученик х занимается в кружке у». Требуется определить такие значения х и у, чтобы высказывательная форма превратилась в истинное высказывание.
1) фотограф старше Гриши;
2) Алёша старше Вити, а шахматист старше Алёши;
3) в воскресенье Алёша с фотографом играли в теннис, а Гриша в то же время проиграл авиамоделисту в городки.
Можем сделать выводы: Гриша — не фотограф (1); шахматист — не Алёша и не Витя (2); Алёша — не фотограф и не авиамоделист, Гриша — не фотограф и не авиамоделист (3). Отметим это в таблице:
Имеющейся информации достаточно для того, чтобы утверждать, что Алёша занимается математикой, а Гриша — шахматами:
Из того, что Гриша — шахматист, и условий (1) и (2) следует, что мы можем расположить учеников по возрасту (в порядке возрастания): Витя — Алёша — шахматист Гриша — фотограф. Следовательно, Боря — фотограф. Этого достаточно, чтобы окончательно заполнить таблицу:
Итак, Алёша занимается в математическом кружке, Боря — в фотокружке, Витя — в авиамодельном кружке, Гриша — в шахматном кружке.
Самостоятельно сделайте вывод о том, кто из ребят в каком классе учится.
22.4. Использование таблиц истинности для решения логических задач
Аппарат алгебры логики позволяет применять к широкому классу логических задач универсальные методы, основанные на формализации условий задачи.
Одним из таких методов является построение таблицы истинности по условию задачи и её анализ. Для этого следует:
1) выделить из условия задачи элементарные (простые) высказывания и обозначить их буквами;
2) записать условие задачи на языке алгебры логики, соединив простые высказывания в составные с помощью логических операций;
3) построить таблицу истинности для полученных логических выражений;
4) выбрать решение — набор логических переменных (элементарных высказываний), при котором значения логических выражений соответствуют условиям задачи;
5) убедиться, что полученное решение удовлетворяет всем условиям задачи.
Пример 6. Три подразделения А, В, С торговой фирмы стремились получить по итогам года максимальную прибыль. Экономисты высказали следующие предположения:
1) если А получит максимальную прибыль, то максимальную прибыль получат B и С;
2) А и С получат или не получат максимальную прибыль одновременно;
3) необходимым условием получения максимальной прибыли подразделением С является получение максимальной прибыли подразделением B.
По завершении года оказалось, что одно из трёх предположений ложно, а остальные два истинны.
Выясним, какие из названных подразделений получили максимальную прибыль.
Рассмотрим элементарные высказывания:
• А — «А получит максимальную прибыль»;
• В — «B получит максимальную прибыль»;
• С — «С получит максимальную прибыль».
Запишем на языке алгебры логики прогнозы, высказанные экономистами:
Составим таблицу истинности для F1, F2, F3.
Теперь вспомним, что из трёх прогнозов F1, F2, F3 один оказался ложным, а два других — истинными. Эта ситуация соответствует четвёртой строке таблицы.
Таким образом, максимальную прибыль получили подразделения В и С.
22.5. Решение логических задач путём упрощения логических выражений
Следующий формальный способ решения логических задач состоит в том, чтобы:
1) выделить из условия задачи элементарные (простые) высказывания и обозначить их буквами;
2) записать условие задачи на языке алгебры логики, соединив простые высказывания в составные с помощью логических операций;
3) составить единое логическое выражение, учитывающее все требования задачи;
4) используя законы алгебры логики, упростить полученное выражение и вычислить его значение;
5) выбрать решение — набор логических переменных (элементарных высказываний), при котором построенное логическое выражение является истинным;
6) убедиться, что полученное решение удовлетворяет всем условиям задачи.
Пример 7. На вопрос, кто из трёх учащихся изучал логику, был получен ответ: «Если изучал первый, то изучал и второй, но неверно, что если изучал третий, то изучал и второй». Кто из учащихся изучал логику?
Обозначим через А, В, С простые высказывания:
• А = «Первый ученик изучал логику»;
• В = «Второй ученик изучал логику»;
• С = «Третий ученик изучал логику».
Из условия задачи следует истинность высказывания:
Упростим получившееся высказывание:
Получившееся высказывание будет истинным только в случае, если С — истина, а А и В — ложь. А это значит, что логику изучал только третий ученик, а первый и второй не изучали.
САМОЕ ГЛАВНОЕ
Исходными данными в логических задачах являются высказывания. При этом высказывания и взаимосвязи между ними бывают так сложны, что разобраться в них без использования специальных методов бывает достаточно трудно.
Основная идея метода рассуждений состоит в том, чтобы последовательно анализировать всю информацию, имеющуюся в задаче, и делать на этой основе выводы.
Многие логические задачи связаны с рассмотрением нескольких конечных множеств и связей между их элементами. Для решения таких задач зачастую прибегают к помощи таблиц или графов. От того, насколько удачно выбрана их структура, во многом зависит успешность решения задачи.
Аппарат алгебры логики позволяет применять к широкому классу логических задач универсальные методы, основанные на формализации условий задачи.
К ним относятся методы:
1) построения таблицы истинности по условию задачи и её анализ;
2) составления и упрощения логического выражения.
Вопросы и задания
1. Вы встретили 10 островитян, стоящих по кругу. Каждый из них произнёс фразу: «Следующие 4 человека, стоящие после меня по часовой стрелке, лжецы». Сколько среди них лжецов?
2. Однажды некий путешественник гостил на острове рыцарей и лжецов. Там ему встретились два местных жителя. Путешественник спросил одного из них: «Кто-нибудь из вас рыцарь?» Его вопрос не остался без ответа, и он узнал то, что хотел. Кем был островитянин, к которому путешественник обратился с вопросом, — рыцарем или лжецом? Кем был другой островитянин?
3. В старинном индийском храме восседали три богини: Правда, Ложь и Мудрость. Правда говорит только правду, Ложь всегда лжёт, а Мудрость может сказать правду или солгать. Паломник, посетивший храм, спросил у богини слева: «Кто сидит рядом с тобой?» «Правда», — ответила та. Тогда он спросил у средней: «Кто ты?» «Мудрость», — отвечала она. Наконец он спросил у той, что справа: «Кто твоя соседка?» «Ложь», — ответила богиня. И после этого паломник точно знал, кто есть кто. Определите, на каком месте сидит каждая из богинь.
4. В симфонический оркестр приняли на работу трёх музыкантов — Борисова, Сергеева и Васечкина, умеющих играть на скрипке, флейте, альте, кларнете, гобое и трубе. Каждый из музыкантов владеет двумя инструментами.
Известно, что:
1) Сергеев — самый высокий;
2) играющий на скрипке меньше ростом играющего на флейте;
3) играющие на скрипке и флейте и Борисов любят пиццу;
4) когда между альтистом и трубачом возникает ссора, Сергеев мирит их;
5) Борисов не умеет играть ни на трубе, ни на гобое. Выясните, на каких инструментах играет каждый из музыкантов.
5. В педагогическом институте Аркадьева, Бабанова, Корсакова, Дашков, Ильин и Флёров преподают экономическую географию, английский язык, немецкий язык, историю, французский язык, математику.
Известно, что:
1) преподаватель немецкого языка и преподаватель математики в студенческие годы занимались художественной гимнастикой;
2) Ильин старше Флёрова, но стаж работы у него меньше, чем у преподавателя экономической географии;
3) будучи студентками, Аркадьева и Бабанова учились вместе в одном университете. Все остальные окончили педагогический институт;
4) Флёров — сын преподавателя французского языка, но студентом у него не был;
5) преподаватель французского языка — самый старший из всех по возрасту и у него самый большой стаж работы. Он работает в педагогическом институте с тех пор, как окончил его. Преподаватели математики и истории — его бывшие студенты;
6) Аркадьева старше преподавателя немецкого языка.
Кто какой предмет преподаёт?
6. На вопрос «Кто из девушек собирается прийти на день рождения к Саше?» был получен уклончивый ответ: «Если Марина придёт на день рождения, то Надя тоже придёт, а Таня не придёт. Если Надя придёт, то Таня придёт в том и только в том случае, если не придёт Марина». Можно ли по этой информации точно установить, кто из девушек придёт к Саше, а кто нет?
7. В бюро переводов приняли на работу троих сотрудников: Диму, Сашу и Юру. Каждый из них знает ровно два иностранных языка из следующего набора: немецкий, японский, шведский, китайский, французский и греческий.
Известно, что:
1) ни Дима, ни Юра не знают японского;
2) переводчик с шведского старше переводчика с немецкого;
3) переводчик с китайского, переводчик с французского и Саша родом из одного города;
4) переводчик с греческого, переводчик с немецкого и Юра учились втроём в одном институте;
5) Дима — самый молодой из всех троих, и он не знает греческого;
6) Юра знает два европейских языка.
Укажите имена переводчика с шведского языка и переводчика с китайского языка.
8. Ребята знали, что у четырёх подруг — Маши, Кати, Вали и Наташи — дни рождения приходятся на разное время года, но не могли точно вспомнить, у кого на какое.
Попытка вспомнить закончилась следующими утверждениями:
1) у Вали день рождения зимой, а у Кати — летом;
2) у Кати день рождения осенью, а у Маши — весной;
3) весной празднует день рождения Наташа, а Валя отмечает его летом.
Позже выяснилось, что в каждом утверждении только одно из двух высказываний истинно. В какое время года день рождения у каждой из девушек?
9. В санатории на берегу моря отдыхают отец О, мать М, сын S и две дочери D1 и D2. До завтрака члены семьи часто купаются в море, причём известно, что если отец утром отправляется купаться, то с ним обязательно идут мать и сын; если сын идёт купаться, то его сестра D1 отправляется вместе с ним; вторая дочь D2 купается тогда и только тогда, когда купается мать; каждое утро купается по крайней мере один из родителей. Если в воскресенье утром купалась в море лишь одна из дочерей, то кто из членов семьи в это утро ходил на море?
10. В нарушении правил обмена валюты подозреваются четыре работника банка — Антипов (А), Борисов (B), Цветков (С) и Дмитриев (D).
Известно, что:
1) если А нарушил, то и B нарушил правила обмена валюты;
2) если В нарушил, то и С нарушил или А не нарушал;
3) если D не нарушал, то А нарушил, а С не нарушал;
4) если D нарушил, то и А нарушил.
Кто из подозреваемых нарушил правила обмена валюты?
Дополнительные материалы к главе смотрите в авторской мастерской.
Оглавление
§ 22. Логические задачи и способы их решения
Источник