- Логарифмическое неравенство: решение на примерах
- Как найти ОДЗ (область допустимых значений) логарифмического неравенства
- Решение логарифмического неравенства с основанием от 0 до 1
- Решение логарифмических неравенств.
- Основные положения и примеры решения простейших логарифмических неравенств.
- Введение вспомогательной переменной
- О разложении на множители
Логарифмическое неравенство: решение на примерах
Логарифмическое неравенство может встретиться вам в 13 задании ЕГЭ по математике. При решении логарифмического неравенства важно правильно определить область допустимых значений (ОДЗ). Как же решить логарифмическое неравенство? Давайте разберем основные правила.
Как найти ОДЗ (область допустимых значений) логарифмического неравенства
Простейшее логарифмическое неравенство можно записать в виде:знак можно заменить на 1, то знак неравенства не меняется.
Если у логарифма в неравенстве 0 0
Решаем это простейшее неравенство и получаем х > -2.
Таким образом область допустимых значений данного неравенства х > -2.
Далее решаем непосредственно логарифмическое неравенство. Так как основание логарифмов (основание = 2) в неравенстве больше единицы, знак неравенства сохраняется:Так как логарифмы в неравенстве имеют одинаковое основание, то мы их можем просто отбросить и решить неравенство вида
Теперь вспоминаем про нашу ОДЗ и определяем окончательный ответ.
Отметим полученные значения на числовой оси:
Решение логарифмического неравенства с основанием от 0 до 1
Теперь разберем то же самое неравенство, только основание логарифма будет равно ½. Таким образом, получим:
Определяем ОДЗ, как и в прошлом примере, х > -2.
Далее смотрим на основание логарифма. В данном случае основание равно ½, т.е. находится в области от 0 1 или 0 , -4½
Источник
Решение логарифмических неравенств.
Логарифмические неравенства в задании 14 профильного уровня ЕГЭ по математике встречаются чаще других. Это связано, в первую очередь, с тем, что выражения с логарифмом имеют ограниченную область допустимых значений, причём задаваемую также неравенством. Последнее обстоятельство приводит к тому, что решение логарифмического неравенства во многих случаях сводится к решению систем алгебраических неравенств (рациональных и не только).
В этом разделе рассмотрены типовые логарифмические неравенства – простейшие и соответствующие профильному уровню ЕГЭ. Все неравенства даны с решениями и комментариями, поэтому будут полезны и при текущем изучении или повторении этой темы.
Если возникают вопросы — обращайтесь через форму для письма, рисунок конверта кликабелен.
Узнайте, как можно поддержать сайт и помочь его развитию.
Основные положения и примеры решения простейших логарифмических неравенств.
С этим разделом могут ознакомиться и выпускники, которые планируют сдавать экзамен по математике на базовом уровне.
На профильном экзамене встречаются более сложные неравенства, но их также тем или иным образом требуется сводить к простейшим.
К простейшим относятся логарифмические неравенства, которые содержат неизвестную переменную в составе аргумента логарифмической функции с фиксированным основанием, т.е. это неравенства вида \(log_a
В более общих случаях неизвестная величина может встречаться и в основании логарифма.
Чтобы решать как логарифмические неравенства, так и логарифмические уравнения, нужно вспомнить определение и свойства логарифмической функции как таковой.
1) Логарифм – трансцендентная функция, т.е. аналитическая функция, которая не может быть задана с помощью алгебраического уравнения. Поэтому чтобы получить решение простейшего логарифмического неравенства, нужно сначала перейти к алгебраическим соотношениям, т.е. «убрать» логарифм.
2) Логарифм – однозначная и монотонная функция, что означает каждому значению аргумента из области определения соответствует единственное значение функции. Поэтому её можно сравнивать саму с собой и «вычёркивать» логарифм. Как и в каких случаях это делать, рассмотрим на примерых ниже.
3) Главное – логарифмическая функция имеет ограниченную область определения. Это означает, что при решении любых заданий с логарифмами, содержащими переменные, нужно не забывать про ОДЗ (область допустимых значений) этой переменной.
Область значений функции E = R – всё множество действительных чисел. Т.е. сам логарифм, в отличие от его аргумента и основания, может принимать любые значения из промежутка \((-\infty; +\infty)\).
Как уже упоминалось, логарифмическая функция монотонна. Посмотрите на её графики.
При a > 1 функция возрастающая,
Поэтому для решения простейших логарифмических неравенств достаточно преобразовать обе части неравенства к логарифму с одинаковым основанием и затем сравнить подлогарифмические выражения. Таким образом мы сравниваем функцию с самой собой при разных значениях её аргумента, т.е. как бы «вычёркиваем» log с обоих сторон неравенства. При этом,
— если основание степени больше единицы, то знак неравенства без «log» будет таким же, как знак исходного неравенства, что характерно для возрастающих функций – большему значению аргумента соответствует большее значение функции;
— если основание степени меньше единицы, то знак неравенства будет обратным по отношению к знаку исходного неравенства, что характерно для убывающих функций – большему значению аргумента соответствует меньшее значение функции.
Пример 1.
Решение.
Область допустимых значений (ОДЗ) выражения \(2x+7>0.\)
Воспользуемся определением логарифма, чтобы представить число −2 в виде значения логарифмической функции с основаением 0,2.
\[0,2^ <-2>= \left(\frac<1><5>\right)^ <-2>= \left(\frac<5><1>\right)^ <2>= 25,\]
следовательно \(-2 = \log_<0,2><25>,\) и заданное неравенство можно преобразовать к виду \[\log_<0,2><(2x+7)>\log_<0,2><25>.>\] Теперь можно «отбросить логарифм», изменив знак неравенства на противоположный, так как его основание 0,2 0,> \\ <2x+7 -3,5,>\\
Преобразуем неравенство:
\(\text
Таким образом, заданное неравенство равносильно системе неравенств \[\begin
Ответ: \(x \in (3; 8). \)
Введение вспомогательной переменной
Пример 4.
Решение.
Аргументом обоих логарифмов является один и тот же квадратный трёхчлен \(4+3x-x^2\), однако основания логарифмов различны – это 2 и 0,5, поэтому нужно воспользоваться свойствами логарифмической функции и привести логарифмы к одному основанию. Поскольку \(0,5 = \dfrac<1> <2>= 2^<-1>\), то приводить будем второй логарифм к основанию 2. Для этого используем формулу \(\log_b=\frac<1>\log_a\): \[\log_<0,5> <(4+3x-x^2)>= \log_<2^<-1>><(4+3x-x^2)>=\frac<1><-1>\log_2 <(4+3x-x^2)>= -\log_2<(4+3x-x^2)>\] Теперь неравенство имеет следующий вид \[\log_2^2 <(4+3x-x^2)>— 7\log_2 <(4+3x-x^2)>+10 > 0.\]
В последнем неравенстве неизвестная величина встречается в обоих слагаемых в совершенно одинаковой форме, поэтому можно продолжить решение методом введения вспомогательной переменной.
Пусть \(y = \log_2<(4+3x-x^2)>\), тогда логарифмическое неравенство преобразуется в обычное квадратное неравенство \[y^2 — 7y +10 > 0,\] которое решается графически (через параболу) или методом интервалов. Сделайте это самостоятельно. Ответ получится такой \(y \in (-\infty;2)\cup(5;+\infty)\) или, что то же самое \[\left[<\beginОбъединяя множества решений совокупностей неравенств (обозначены квадратной скобкой «[«) и пересекая множества решений систем неравенств (обозначены фигурной скобкой скобкой «<"), делаем окончательный вывод \(x \in (-1;0) \cup (3;4).\)
Замечание 1. Чтобы не выписывать совокупности систем и системы совокупностей, особенно, если вы путаетесь в этих скобках, можно все этапы решения реализовать схемами на числовой оси.
Замечание 2. Заметим, что с некоторого момента решение задачи сводится к анализу неравенств, в которых один и тот же квадратный трёхчлен \(4+3x-x^2\) сравнивается с числовыми значениями. Поэтому дальнейшие действия можно свести к построению одной параболы – эскиза графика функции \(y = 4+3x-x^2\) – и посмотреть как она соотносится с горизонтальными линиями \(y = 0, \; y = 4\; и\; y =32.\) (Вспомните аналогичное задание 2-й части ОГЭ за 9-ый класс.) На это не уйдёт много времени, т.к. коэффициенты трёхчлена целые числа, корни легко вычисляются по теореме Виета, а параболу достаточно построить только по характерным точкам.
Как быстро построить параболу можно посмотреть в видеоуроке на youtube-канале Mathematichka.
Ответ: \(x \in (-1;0) \cup (3;4).\)
Решение.
Выпишем ОДЗ неравенства.
Условие положительности всех аргументов логарифмической функции \[\begin
Условие неравенства нулю знаменателей всех дробей \[\begin
В этом примере в отличие от предыдущего, напротив, основания всех логарифмов одинаковы – логарифм по основанию 4, но отличаются аргументы. Используем свойства логарифмов, чтобы упростить выражения. \[\log_4 <(64x)>= \log_4<64>+\log_4
Учитывая, что до сих пор все преобразования, которые производились, были равносильными, можем утверждать, что выколов точки 3 и −3 из возможных значений переменной \(y\), мы обеспечили неравенство нулю общего знаменателя дроби, а значит и всех дробей, участвовавших в равносильных преобразованиях. Тем самым выполнена вторая часть ограничений ОДЗ неравенства.
Итак, неравенство для переменной \(y = \log_4
Ответ: \(x \in \left(0; \;\dfrac<1><64>\right) \cup \ <4\>\cup (64;\;+\infty)\).
О разложении на множители
\( \log_3
Решение II – вспомогательная переменная.
ОДЗ: \(x>0.\)
Приведём логарифмы к одному основанию, например, к основанию 3. \[\log_4
Решение III – через уравнение.
ОДЗ: \(x>0.\)
Заменим знак » 0,\] так как \(\sqrt <3>1,\) то \(\log_4<\sqrt<3>> 1,\) то \(\log_4 <3,5>3^1\; и\; 3>1,\) то \(\log_3 <3,5>> 1.\)
3) пусть \(x = 9; \;x \in (4;+\infty)\) \[\log_3
По рисунку формулируем ответ.
Сравните все три способа решения для этого вовсе не сложного неравенства и определитесь, какой вариант наиболее приемлем для вас.
Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.
Чтобы продолжить решение логарифмических неравенств, перейдите по ссылкам
Метод рационализации. в разработке
Примеры неравенств из банка заданий ЕГЭ в разработке
Задачи для самостоятельного решения в разработке
Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.
Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru
Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.
Источник