Способы решения линейных сравнений

Сравнения, система вычетов, решение линейных систем по модулю

Содержание

Сравнения по модулю [ править ]

Будем рассматривать целые числа в связи с остатками от деления их на данное целое число m, которое назовем модулем. Каждому целому числу отвечает определенный остаток от деления его на m. Если двум целым a и b отвечает один и тот же остаток r, то они называются сравнимыми по модулю m.

Сравнимость для a и b записывается так :
[math]a \equiv b(mod \text < >m)[/math]

Сравнимость чисел a и b по модулю m равносильна:

Арифметика сравнений [ править ]

Свойства сравнений [ править ]

  • 1. Два числа, сравнимые с третьим сравнимы между собой. [math]a \equiv c(mod \text< >m) \text <, >b \equiv c(mod \text< >m) \Rightarrow a \equiv b(mod \text< >m)[/math]
    • Легко выводится из пункта «а».
  • 2. Сравнения можно почленно складывать. [math] a_1 + a_2 + a_3 \equiv b_1 + b_2 + b_3(mod \text< >m)[/math]
    • Представляем сравнения, как в пункте «а» и складываем.
  • 3. Сравнения можно почленно перемножать. [math] a_1a_2a_3 \equiv b_1b_2b_3(mod \text< >m)[/math]
    • Представляем сравнения, как в пункте «а», перемножаем, получим [math] a_1a_2a_3 = b_1b_2b_3+mN[/math] , где N—целое.
  • 4. Обе части сравнения можно разделить на их общий делитель, если последний взаимно прост с модулем.
    • Действительно, из [math]a \equiv b(mod \text < >m)[/math] , [math] a = a_1d, b = b_1d, (d,m)=1[/math] следует, что [math] a-b = (a_1 — b_1)d \vdots m [/math] , поэтому [math] a_1 \equiv b_1(mod \text < >m)[/math] .
  • 5. Обе части сравнения можно умножить на одно и тоже число.
    • Действительно, из [math]a \equiv b(mod \text < >m)[/math] , следует [math] a = b+mt, ak =bk +mkt [/math] , и, следовательно, [math]ak \equiv bk(mod \text < >mk)[/math] .
  • 6. Обе части сравнения и модуль можно разделить на их общий делитель.
    • Действительно, пусть [math]a \equiv b(mod \text < >m), a = a_1d, b=b_1d, m=m_1d[/math] , отсюда [math] a= b+mt, a_1d =b_1d +m_1dt, a_1 =b_1 +m_1t[/math] , и, следовательно, [math]a_1 \equiv b_1(mod \text < >m_1)[/math] .
  • 7. Если сравнение [math]a\equiv b[/math] имеет место по нескольким модулям, то оно имеет место и по модулю равному НОК этих модулей.
    • В самом деле, из [math] a \equiv b(mod \text< >m_1),\ldots,a \equiv b(mod \text< >m_k)[/math] следует, что разность [math] a-b [/math] делится на все модули [math] m_1,m_2,\ldots,m_k[/math] . Поэтому она должна делиться и на их НОК.
  • 8. Если сравнение имеет место по модулю m, то оно имеет место и по модулю d, равному любому делителю числа m.
    • Следует из пункта «б».
  • 9. Если одна часть сравнения и модуль делятся на некоторое число, то и другая сторона сравнения должна делиться на это число.
    • Следует из пункта «а».
  • 10. Если [math]a \equiv b(mod \text< >m) [/math] , то [math](a,m) = (b,m) [/math] .
    • Следует из пункта «а» по свойству НОДа.

Полная и приведенная система вычетов [ править ]

Числа равноостаточные(сравнимые по модулю m) образуют класс чисел по модулю m. Из такого определения следует, что всем числам класса отвечает один остаток r, и мы получим все числа класса, если в форме [math]mt + r [/math] заставим t пробегать все целые числа. Таким образом для каждого значения остатка имеется свой класс чисел.

Любое число класса называется вычетом по модулю m. Вычет получаемый при [math] t = 0[/math] , равный самому остатку r, называется наименьшим неотрицательным вычетом.

Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.

Согласно 10 свойству сравнений, числа одного класса по модулю m имеют одинаковый НОД. Особенно важны классы, содержащие числа, взаимно простые с модулем. Взяв вычет от каждого такого класса, получим приведенную систему вычетов по модулю m.

Решение линейных систем по модулю [ править ]

Примеры решения [ править ]

Пример 1.
[math] 12x \equiv 6(mod \text< >18)[/math]
Найдем НОД [math](12,18)=6 [/math]
Перейдем к новому сравнению [math] 2x \equiv 1(3) [/math]
Легко находится [math] x_0 = 2 [/math]
Тогда ответом будет [math] x_0 =2, x_1 = x_0 — \frac<(a,m)>=-1, x_2 = -4[/math]

Пример 2.
[math] 111x \equiv 75(mod \text< >321)[/math]
Найдем НОД [math](111,321)=3 [/math] , 75 кратно 3, значит имеем 3 решения
Перейдем к новому сравнению [math] 37x \equiv 25(107) [/math]
Воспользуемся цепными дробями, в нашем случае [math] n=4, p_ = 26[/math] , значит [math] x_0 \equiv -26\cdot 25 (107) \equiv 99(107) [/math]
Тогда ответом будет [math] x_0 = 99, x_1 = 206, x_2 = 313 [/math] .

Источник

Решение сравнений и их приложения.

Решение сравнений и их приложения

Скачать:

Вложение Размер
reshenie_sravnenii_i_ih_prilozheniya.docx 131.78 КБ

Предварительный просмотр:

Решение сравнений и их приложения.

Глава1. Общие вопросы теории сравнений

§1. Сравнение по модулю

§2. Свойства сравнений

  1. Свойства сравнений, не зависящие от модуля
  2. Свойства сравнений, зависящие от модуля

§3. Система вычетов

  1. Полная система вычетов
  2. Приведённая система вычетов

§4. Теорема Эйлера и Ферма

  1. Функция Эйлера
  2. Теорема Эйлера и Ферма

Глава2. Теория сравнений с переменной

§1. Основные понятия, связанные с решением сравнений

  1. Корни сравнений
  2. Равносильность сравнений
  3. Теорема Вильсона

§2. Сравнения первой степени и их решения

  1. Метод подбора
  2. Способы Эйлера
  3. Метод алгоритма Евклида
  4. Метод цепных дробей

§3. Системы сравнений 1-ой степени с одним неизвестным

§4. Деление сравнений высших степеней

§5. Первообразные корни и индексы

  1. Порядок класса вычетов
  2. Первообразные корни по простому модулю
  3. Индексы по простому модулю

Глава3. Приложение теории сравнений

§1. Признаки делимости

§2. Проверка результатов арифметических действий

§3. Обращение обыкновенной дроби в конечную

десятичную систематическую дробь

В нашей жизни часто приходится сталкиваться с целыми числами и задачами связанными с ними. В данной дипломной работе я рассматриваю теорию сравнения целых чисел.

Два целых числа, разность которых кратна данному натуральному числу m называются сравнимыми по модулю m.

Слово «модуль» происходит от латинского modulus, что по–русски означает «мера», «величина».

Утверждение «а сравнимо с b по модулю m» обычно записывают в виде a b (mod m) и называют сравнением.

Определение сравнения было сформулировано в книге К. Гаусса «Арифметические исследования». Эту работу, написанную на латинском языке начали печатать в 1797 году, но книга вышла в свет лишь 1801 году из-за того, что процесс книгопечатания в то время был чрезвычайно трудоёмким и длительным. Первый раздел книги Гаусса так и называется: «О сравнении чисел вообще».

Сравнениями очень удобно пользоваться в тех случаях, когда достаточно знать в каких – либо исследованиях числа с точностью до кратных некоторого числа.

Например, если нас интересует, на какую цифру оканчивается куб целого числа a, то нам достаточно знать a лишь с точностью до кратных чисел 10 и можно пользоваться сравнениями по модулю 10.

Целью данной работы является рассмотрение теории сравнений и исследование основных методов решения сравнений с неизвестными, а также изучение применения теории сравнений к школьной математике.

Дипломная работа состоит из трёх глав, причём каждая глава разбита на параграфы, а параграфы на пункты.

В первой главе изложены общие вопросы теории сравнений. Здесь рассматриваются понятие сравнения по модулю, свойства сравнений, полная и приведённая система вычетов, функция Эйлера, теорема Эйлера и Ферма.

Вторая глава посвящена теории сравнений с неизвестной. В ней излагаются основные понятия, связанные с решением сравнений, рассматриваются способы решения сравнений первой степени ( метод подбора, способ Эйлера, метод алгоритма Евклида, метод цепных дробей, с помощью индексов), систем сравнений первой степени с одной неизвестной, сравнений высших степеней и др.

Третья глава содержит некоторые приложения теории чисел к школьной математике. Рассмотрены признаки делимости, проверка результатов действий, обращение обыкновенных дробей в систематические десятичные дроби.

Изложение теоретического материала сопровождается большим количеством примеров, раскрывающих суть вводимых понятий и определений.

Источник

Читайте также:  Confume argan treatment oil способ применения
Оцените статью
Разные способы