- Решение линейных дифференциальных уравнений первого порядка
- Определения и методы решений
- Решение линейного дифференциального уравнения с помощью интегрирующего множителя
- Пример решения линейного дифференциального уравнения первого порядка
- Способы решения линейного дифференциального уравнения первого порядка
- Линейные уравнения первого порядка
Решение линейных дифференциальных уравнений первого порядка
Определения и методы решений
Линейное дифференциальное уравнение первого порядка – это уравнение вида
,
где p и q – функции переменной x .
Линейное однородное дифференциальное уравнение первого порядка – это уравнение вида
.
Линейное неоднородное дифференциальное уравнение первого порядка – это уравнение вида
.
Член q ( x ) называется неоднородной частью уравнения.
Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:
Решение линейного дифференциального уравнения с помощью интегрирующего множителя
Рассмотрим метод решения линейного дифференциального уравнения первого порядка с помощью интегрирующего множителя.
Умножим обе части исходного уравнения (1) на интегрирующий множитель
:
(2)
Далее замечаем, что производная от интеграла равна подынтегральной функции:
По правилу дифференцирования сложной функции:
По правилу дифференцирования произведения:
Подставляем в (2):
Интегрируем:
Умножаем на . Получаем общее решение линейного дифференциального уравнения первого порядка:
Пример решения линейного дифференциального уравнения первого порядка
Разделим обе части исходного уравнения на x :
(i) .
Тогда
;
.
Интегрирующий множитель:
Знак модуля можно опустить, поскольку интегрирующий множитель можно умножать на любую постоянную (в том числе на ± 1 ).
Умножим (i) на x 3 :
.
Выделяем производную.
;
.
Интегрируем, применяя таблицу интегралов:
.
Делим на x 3 :
.
Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.
Автор: Олег Одинцов . Опубликовано: 22-07-2012 Изменено: 25-02-2015
Источник
Способы решения линейного дифференциального уравнения первого порядка
Использование интегрирующего множителя;
Метод вариации постоянной.
Если линейное дифференциальное уравнение записано в стандартной форме: \[y’ + a\left( x \right)y = f\left( x \right),\] то интегрирующий множитель определяется формулой: \[u\left( x \right) = \exp \left( <\int > \right).\] Умножение левой части уравнения на интегрирующий множитель \(u\left( x \right)\) преобразует ее в производную произведения \(y\left( x \right) u\left( x \right).\)
Общее решение диффференциального уравнения выражается в виде: \[y = \frac <<\int + C>><>,\] где \(C\) − произвольная постоянная.
Данный метод аналогичен предыдущему подходу. Сначала необходимо найти общее решение однородного уравнения : \[y’ + a\left( x \right)y = 0.\] Общее решение однородного уравнения содержит постоянную интегрирования \(C.\) Далее мы заменяем константу \(C\) на некоторую (пока еще неизвестную) функцию \(C\left( x \right).\) Подставляя это решение в неоднородное дифференциальное уравнение, можно определить функцию \(C\left( x \right).\)
Описанный алгоритм называется методом вариации постоянной . Разумеется, оба метода приводят к одинаковому результату.
Если, кроме дифференциального уравнения, задано также начальное условие в форме \(y\left( <
Решение задачи Коши не содержит произвольной константы \(C.\) Ее конкретное числовое значение определяется подстановкой общего решения уравнения в заданное начальное условие \(y\left( <
Будем решать данную задачу методом вариации постоянной. Сначала найдем общее решение однородного уравнения: \[xy’ = y,\] которое решается разделением переменных: \[
Теперь заменим константу \(C\) на некоторую (пока неизвестную) функцию \(C\left( x \right)\) и далее будем искать решение исходного неоднородного уравнения в виде: \[y = C\left( x \right)x.\] Производная равна \[y’ = <\left[
Таким образом, общее решение заданного уравнения записывается в виде: \[y = C\left( x \right)x = \left( <
\(A.\;\) Сначала решим данную задачу с помощью интегрирующего множителя . Наше уравнение уже записано в стандартной форме. Поэтому: \[a\left( x \right) = — 2.\] Тогда интегрирующий множитель имеет вид: \[ > \right) > = <\exp \left( <\int <\left( < - 2>\right)dx> > \right) > = <\underbrace x_pdx> > = <\left[ <\begin
= qp — \int
>\\
\\ >,\;q = — \frac<1><2>
Далее предположим, что \(C\) является функцией \(x\) и подставим решение \(y = C\left( x \right)
Будем решать данный пример методом вариации постоянной. Для удобства запишем уравнение в стандартной форме: \[y’ + \frac
Сначала вычислим интегрирующий множитель, который записывается в виде \[u\left( x \right) =
Следовательно, решение задачи Коши выражается формулой: \[y = \frac<1><<3\cos x>>\left( <4 - \cos 2x>\right).\]
Видно, что данное уравнение не является линейным по отношению к функции \(y\left( x \right).\) Однако мы можем попытаться найти решение для обратной функции \(x\left( y \right).\) Запишем заданное уравнение через дифференциалы и сделаем некоторые преобразования: \[
Источник
Линейные уравнения первого порядка
Назначение сервиса . Онлайн калькулятор можно использовать для проверки решения однородных и неоднородных линейных дифференциальных уравнений вида y’+y=b(x) .
- Решение онлайн
- Видеоинструкция
Теорема. Пусть a1(x) , a0(x) , b(x) непрерывны на отрезке [α,β], a1≠0 для ∀x∈[α,β]. Тогда для любой точки (x0, y0), x0∈[α,β], существует единственное решение уравнения, удовлетворяющее условию y(x0) = y0 и определенное на всем интервале [α,β].
Рассмотрим однородное линейное дифференциальное уравнение a1(x)y’+a0(x)y=0 .
Разделяя переменные, получаем , или, интегрируя обе части,
Последнее соотношение, с учетом обозначения exp(x) = e x , записывается в форме
Попытаемся теперь найти решение уравнения в указанном виде, в котором вместо константы C подставлена функция C(x) то есть в виде
Подставив это решение в исходное, после необходимых преобразований получаем Интегрируя последнее, имеем
где C1— некоторая новая константа. Подставляя полученное выражение для C(x), окончательно получаем решение исходного линейного уравнения .
Описанный метод решения называется методом Лагранжа или методом вариации произвольной постоянной (см. также Метод вариации произвольной постоянной решения линейных неоднородных уравнений).
Пример . Решить уравнение y’ + 2y = 4x . Рассмотрим соответствующее однородное уравнение y’ + 2y = 0 . Решая его, получаем y = Ce -2 x . Ищем теперь решение исходного уравнения в виде y = C(x)e -2 x . Подставляя y и y’ = C'(x)e -2 x — 2C(x)e -2 x в исходное уравнение, имеем C'(x) = 4xe 2 x , откуда C(x) = 2xe 2 x — e 2 x + C1 и y(x) = (2xe 2 x — e 2 x + C1)e -2 x = 2x — 1 + C1e -2 x — общее решение исходного уравнения. В этом решении y1(x) = 2x-1 — движение объекта под действием силы b(x) = 4x, y2(x) = C1e -2 x -собственное движение объекта.
Пример №2 . Найти общее решение дифференциального уравнения первого порядка y’+3 y tan(3x)=2 cos(3x)/sin 2 2x.
Это неоднородное уравнение. Сделаем замену переменных: y=u•v, y’ = u’v + uv’.
3u v tg(3x)+u v’+u’ v = 2cos(3x)/sin 2 2x или u(3v tg(3x)+v’) + u’ v= 2cos(3x)/sin 2 2x
Решение состоит из двух этапов:
1. u(3v tg(3x)+v’) = 0
2. u’v = 2cos(3x)/sin 2 2x
1. Приравниваем u=0, находим решение для 3v tg(3x)+v’ = 0
Представим в виде: v’ = -3v tg(3x)
Интегирируя, получаем:
ln(v) = ln(cos(3x))
v = cos(3x)
2. Зная v, Находим u из условия: u’v = 2cos(3x)/sin 2 2x
u’ cos(3x) = 2cos(3x)/sin 2 2x
u’ = 2/sin 2 2x
Интегирируя, получаем:
Из условия y=u•v, получаем:
y = u•v = (C-cos(2x)/sin(2x)) cos(3x) или y = C cos(3x)-cos(2x) ctg(3x)
Источник