Способы решения иррациональных выражений

Преобразование иррациональных выражений в математике с примерами решения и образцами выполнения

Иррациональными выражениями называют выражения, содержащие операцию извлечения корня. Другими словами, иррациональные выражения – это выражения с радикалами (выражения, содержащие в своей записи знаки корня).

Арифметический корень и его свойства

Определение арифметического корня: Пусть а—действительное число, a n — натуральное число, большее единицы. Поставим перед собой задачу: найти число х, такое, чтобы выполнялось равенство

Сначала рассмотрим конкретные примеры.

тогда равенство (1) принимает вид: откуда

тогда равенство (1) принимает вид: откуда

тогда равенство (1) принимает вид: что не выполняется ни при каком действительном значении х;

тогда равенство (1) принимает вид: откуда

Эти примеры показывают, что поставленная задача при четном имеет два решения, при нечетном n —одно решение, при четном ни одного решения.

Если задача имеет решение, т. е. равенство выполняется при некоторых значениях х, то эти значения x называются корнями n-й степени из числа а итак корень n-й степени из числа а—это такое число, n-я степень которого равна а.

Из рассмотренных выше примеров следует, что существуют два корня второй степени из числа 16 — это числа 4 и -4; существует один корень третьей степени из числа 27 —это число 3; не существует корня четвертой степени из числа —16; существует один корень пятой степени из числа —32—это число —2.

Рассмотрим случай отыскания корня n-й степени из неотрицательного числа. Можно доказать, что если и то существует и только одно неотрицательное число х, такое, что (доказательство проводится в курсе высшей математики; представление об этом доказательстве будет дано в следующей главе).

Арифметическим корнем n-й степени из положительного числа а называется такое положительное число, n-я степень которого равна а.

Для арифметического корня n-й степени из числа а принято обозначение Число а называется подкоренным числом или подкоренным выражением, n- показатель корня. Если то обычно не пишут а пишут просто и называют это выражение квадратным корнем. Часто вместо термина «корень» используется термин «радикал».

Согласно определению запись где означает, во-первых, что и, во-вторых, что т. е. Например,

Полагают также

Обратим внимание читателя на то, что, например,

Свойства арифметических корней

Условимся прежде всего о следующем: все переменные, которые встречаются в формулировках свойств и в примерах, рассматриваемых в настоящем и следующем пунктах, будем считать принимающими только неотрицательные значения. Кроме того, мы рассматриваем только арифметические корни, а потому каждый раз специально подчеркивать это не будем. Значит, мы будем писать: «корень n-й степени из неотрицательного числа», а читатель должен понимать, что речь идет об арифметическом корне.

1°. Корень n-й степени из произведения двух неотрицательных чисел равен произведению корней из этих чисел, т. е.

Доказательство:

Мы знаем, что это такое неотрицательное число, которое, будучи возведено в степень n, дает подкоренное выражение ab. Ясно, что — неотрицательное число. Значит, если мы покажем, что то это и будет обозначать, что

Итак, рассмотрим выражение По свойству 1° степени с натуральным показателем (стр. 45) имеем

Так как то получаем

Пример. Вычислить

Решение. По свойству 1° имеем

2°. Корень n-й степени из дроби, числитель которой неотрицателен, а знаменатель положителен, равен корню из числителя, деленному на корень из знаменателя, т. е.

Пример:

Доказательство этого свойства аналогично доказательству свойства 1°.

3°. Чтобы возвести корень n-й степени в натуральную степень k, достаточно возвести в эту степень подкоренное выражение и из полученного результата извлечь корень n-й степени, т. е.

Читайте также:  Исковое заявление способы подачи

Пример:

Доказательство:

По определению корня это такое неотрицательное число, которое, будучи возведено в n-ю степень, дает Поэтому нам достаточно показать, что

По свойству 3° степени с натуральным показателем (стр. 45) имеем

Так как то получаем т. е.

4°. Чтобы извлечь корень из корня, нужно перемножить показатели корней, а подкоренное выражение оставить без изменения, т. е.

Пример:

Доказательство:

значит,

5°. Если показатель корня и показатель степени подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т. е.

Пример:

Доказательство:

По определению корня это такое неотрицательное число, которое, будучи возведено в степень mn дает Значит, достаточно показать, что

По свойству 3° степени с натуральным показателем имеем

Значит,

Примеры:

Извлечь корень из произведения:

Решение:

а) Применив свойство 1° арифметических корней, получим:

Напомним, что мы в начале рассматриваемого пункта условились считать все переменные принимающими только неотрицательные значения. Не будь этого соглашения, мы не имели бы права писать так как при это неверно; то же относится и к равенству

2. Извлечь корень из дроби

Решение:

а) Обратим смешанное число в неправильную дробь: свойству 2° получаем

б) воспользовавшись свойствами 2° и 1°, получим

3.Вынести множитель из-под знака корня:

Решение:

а) Представим подкоренное выражение в виде и применим к полученному произведению свойство 1° арифметических дробей:

Такое преобразование называется вынесением множителя из-под знака корня. Цель преобразования —упрощение подкоренного выражения;

В некоторых случаях оказывается полезным преобразование, в определенном смысле обратное только что рассмотренному, а именно: внесение множителя под знак корня. Пусть, например, нужно выяснить, какое из чисел больше: или Рассмотрим число Внесем множитель 2 под знак корня —это достигается с помощью следующего преобразования:

Сделаем аналогичное преобразование числа

Так как

4.Ввести множитель под знак корня:

Решение:

В рассмотренных примерах мы пользовались только определением корня и свойствами 1° и 2°. Рассмотрим теперь примеры использования свойств 3° и 4°.

Решение:

а) По свойству 3° имеем

Обычно стараются подкоренное выражение упростить, для чего выносят множители за знак корня. Имеем:

6.Выполнить действия:

Решение:

а) По свойству 4° арифметических корней имеем

б) преобразуем выражение внеся множитель под знак корня:

Далее имеем

Рассмотрим, наконец, примеры, в которых используется свойство 5°.

Решение:

а) По свойству 5° мы имеем право показатель корня и показатель степени подкоренного выражения разделить на одно и то же натуральное число. Если в рассматриваемом примере разделить указанные показатели на 3, то получим

8.Упростить выражения:

Решение:

а) Из свойства 1° получаем, что для перемножения корней одной и той же степени достаточно перемножить подкоренные выражения, из полученного результата извлечь корень той же степени; значит,

в) выше мы видели, как перемножить корни одной и той же степени. В данном же примере требуется перемножить корни с различными показателями. Значит, прежде всего мы должны привести радикалы к одному показателю. Согласно свойству 5°, можно показатель корня и показатель степени подкоренного выражения умножить на одно и то же натуральное число; поэтому

А теперь разделим в полученном результате показатели корня и подкоренного выражения на 3:

г) приведем радикалы к одному показателю. Для этого, очевидно, нужно найти наименьшее общее кратное чисел 10 и 15; Значит, нам нужно показатели корня и степени подкоренного выражения для первого из перемножаемых радикалов умножить на 3, а для второго—на 2; получим

д) НОК чисел 4, 6, 10 равно 60, поэтому приведем все радикалы к показателю 60:

Тождество

Ответим на такой вопрос: если переменная а принимает как неотрицательные, так и отрицательные значения, то чему равен

Если Но значит можно считать, что при справедливо равенство

Если и речь, следовательно, идет об арифметическом корне второй степени из положительного числа Здесь могут представиться два случая: Если например, Если же то например,

Читайте также:  Какие способы оформления бывают

Итак, можно записать, что

Но точно так же определяется модуль действительного числа

Таким образом, Например,

Вообще, если n — четное число, т.е. то

Так, если в рассмотренных примерах 1, а) и б) снять требование неотрицательности значений переменных, то решение примера выглядело бы следующим образом:

Дополнительные замечания о свойствах радикалов

Рассмотренные пять свойств арифметических корней, т. е. пять свойств радикалов безоговорочно верны для неотрицательных подкоренных выражений. Но при решении примеров на действия с радикалами нужно иметь в виду возможность отрицательных значений переменных, содержащихся под знаками радикалов.

Пусть а и b — отрицательные числа, а n — четное число. В этом случае написать нельзя, так как правая часть такого «равенства» не имеет смысла (например, нельзя написать Здесь можно рассуждать так: а и b—отрицательные числа, следовательно, Но тогда значит,

Так как то, применив свойство 1° арифметических корней, получим

Итак, если n —четное число, а числа а и b имеют одинаковые знаки, то

Очень внимательно следует относиться к свойству 5°. Пусть, например, нужно упростить выражение Если разделить показатели корня и подкоренного выражения на 2, то придем к выражению не имеющему смысла, так как под корнем четной степени содержится отрицательное число. Верное равенство в данном случае выглядит так:

В самом деле, и, следовательно,

Обобщение понятия о показателе степени

Постановка задачи: Напомним определение степени с натуральным показателем и ее свойства.

Определение

Основные свойства степени

В последующих пунктах речь пойдет об определениях степени с любым рациональным показателем.

Сначала мы определим степень с положительным дробным показателем, далее степень с нулевым показателем и затем степень с отрицательным рациональным показателем. Ясно, что ни на один из этих случаев не переносится данное выше определение, например нельзя определить как произведение числа а самого на себя 3/5 раза. Поэтому каждый раз придется вводить новое определение. При выборе нового определения мы будем руководствоваться требованием, чтобы на новый случай степени распространялись свойства, аналогичные свойствам 1°—5°, перечисленным выше.

Степень с положительным дробным показателем

Пусть Надо определить так, чтобы выполнялось, например, равенство т. е. чтобы при возведении степени в степень показатели перемножались. Но это равенство возможно лишь в случае, когда Возникает вполне естественная мысль: определить Но будет ли такое определение удачным, т. е. будут ли при таком определении выполняться свойства, аналогичные свойствам 1°—5°? Проверим это.

Доказательство. Согласно предложенному определению степени с положительным дробным показателем имеем: Значит, Воспользовавшись свойствами радикалов, приведем радикалы к одному показателю и выполним умножение:

Далее имеем значит,

Доказательство:

Воспользуемся свойствами возведения радикала в степень и извлечения корня из корня:

Аналогично можно показать, что будут выполняться свойства:

Итак, при предложенном определении степени с положительным дробным показателем основные свойства степени выполнены. Значит, определение удачно и его можно принять.

Определение:

Если

Например, так как так как

На практике при выполнении действий над радикалами довольно часто переходят к дробным показателям.

Примеры:

Выполнить умножение:

Решение:

2.Разложить на множители

Решение:

Степень с нулевым показателем

При выборе определения мы также будем руководствоваться требованием, чтобы на случай степени с нулевым показателем распространялись свойства 1°—5° степени с натуральным показателем (впрочем, теперь мы уже вправе говорить о распространении свойств степени с положительным рациональным показателем). В частности, при умножении степеней с одинаковым основанием показатели должны складываться, т. е. должно выполняться равенство

так как (n—натуральное число). Это равенство при возможно лишь в случае, когда Поэтому возникает мысль определить как 1. Нетрудно проверить, что при таком определении выполняются свойства, аналогичные свойствам 1° — 5° степени с натуральным показателем, значит, определение можно принять.

Определение:

Если

Например,

Читайте также:  Элеваторный способ добычи торфа

Степень с отрицательным рациональным показателем

Пусть положительное рациональное число. Надо определить так, чтобы, например, выполнялось равенство

Так как то равенство (1) возможно лишь, если определить Нетрудно показать , что при таком определении будут выполняться свойства, аналогичные свойствам 1°—5°.

Покажем, например, что

Остальные свойства проверяются аналогично.

Определение:

Если

Например,

Замечание:

Если r—целое число, то полагают а и в случае, когда а Степень с любым рациональным показателем

Мы определили понятие степени с любым рациональным показателем. Эта степень обладает следующими свойствами (мы полагаем а > 0, b > 0, — произвольные рациональные числа):

Заметим, что после введения нулевого и отрицательного показателей мы имеем право в свойстве 2° не делать оговорки, что

Тождественные преобразования иррациональных выражении

Тождественно равные выражения на данном множестве: По определению (стр. 47) тождественно равными выражениями называются такие, у которых все соответственные значения равны. Согласно этому определению выражения и а не являются тождественно равными. Действительно, пусть тогда т. е. равенство не является тождеством.

Однако на множестве всех неотрицательных чисел все соответственные значения выражений и а равны и равенство называют тождеством на этом множестве.

Определение:

Два выражения называются тождественно равными на данном множестве, если на этом множестве они имеют смысл и все их соответственные значения равны.

Например, выражения тождественно равны на множестве Легко видеть, что где TV, — множество, на котором определено выражение множество, на котором определено выражение

Тождественные преобразования иррациональных выражений

Выражение с переменными называется иррациональным, если оно содержит извлечение корня из переменной или возведение переменной в дробную степень.

Тождественные преобразования иррациональных выражений выполняются, как правило, на множестве неотрицательных чисел. Это вытекает из введенных ранее определений. Например, сократим дробь При выражение а — 4 можно представить в виде разности квадратов выражений а затем сократить дробь:

Проделанное нами тождественное преобразование выполнено на множестве неотрицательных чисел, т. е. при В дальнейшем мы будем это подразумевать и специально не оговаривать.

Примеры:

Решение:

Здесь целесообразно применить прием избавления от иррациональности в знаменателе. Для этого умножим числитель и знаменатель первой дроби на (это выражение называется сопряженным для

Аналогично поступим со второй дробью (теперь выражением, сопряженным для знаменателя, является

Для того чтобы избавиться от иррациональности в знаменателе третьей дроби, умножим числитель и знаменатель этой дроби на

Таким образом, имеем

Решение:

Прежде всего подумаем, нельзя ли сократить первую дробь. Выражение, стоящее в числителе, можно преобразовать так:

Таким образом, последовательное сокращение дробей при тождественных преобразованиях иррациональных выражений обеспечивает достаточную простоту решения. Проиллюстрируем эту мысль еще на одном примере.

Решение:

Попытка привести дроби, стоящие в числителе, к общему знаменателю без предварительных сокращений этих дробей приведет решение к неоправданному усложнению. Поэтому в первую очередь надо сократить эти дроби, а затем произвести указанные действия:

Идея сокращения дробей лежит и в основе тождественных преобразований выражений, содержащих степени с рациональными показателями.

Решение:

Подчеркнем, что проделанные нами в примере 4 тождественные преобразования выполнены на множестве положительных чисел, т. е. при

Иногда множество, на котором выполняются преобразования, имеет более сложную природу. Поясним это на следующем примере.

Решение:

Рассмотрим выражение Оно преобразуется к виду Замечаем, что Итак, Аналогично

После этих наблюдений мы можем заданное выражение переписать в виде

Выше мы отмечали, что поэтому

По смыслу примера имеем (заданное выражение содержит Значит, а потому Таким образом, мы приходим к выражению

Теперь нужно рассмотреть два случая: В первом случае а во втором

Ответ:

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Оцените статью
Разные способы