- Способы решений уравнений с синусами
- Методы решения тригонометрических уравнений.
- 1. Алгебраический метод.
- 2. Разложение на множители.
- 3. Приведение к однородному уравнению.
- 4. Переход к половинному углу.
- 5. Введение вспомогательного угла.
- 6. Преобразование произведения в сумму.
- Тригонометрические уравнения — формулы, решения, примеры
- Простейшие тригонометрические уравнения
- Формулы корней тригонометрических уравнений в таблице
- Методы решения тригонометрических уравнений
- Алгебраический метод.
- Разложение на множители.
- Приведение к однородному уравнению
- Переход к половинному углу
- Введение вспомогательного угла
- Дробно-рациональные тригонометрические уравнения
- Решение тригонометрических уравнений — 39 примеров!
- Тригонометрические уравнения — коротко о главном
- Простейшие тригонометрические уравнения
- Как часто тригонометрические уравнения встречаются на ЕГЭ?
- Два способа решения тригонометрических уравнений – через формулы и по кругу
- Алгоритм вычисления арксинусов и других «арок»
- Если «арка» берется от отрицательного числа?
- Решение 11-ти простейших тригонометрических уравнений
Способы решений уравнений с синусами
Методы решения тригонометрических уравнений.
1. Алгебраический метод.
( метод замены переменной и подстановки ).
2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin
( здесь
— так называемый вспомогательный угол ), и наше уравнение прини мает вид:
6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
Источник
Тригонометрические уравнения — формулы, решения, примеры
Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.
Простейшие тригонометрические уравнения
Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.
1. Уравнение `sin x=a`.
При `|a|>1` не имеет решений.
При `|a| \leq 1` имеет бесконечное число решений.
Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`
2. Уравнение `cos x=a`
При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.
При `|a| \leq 1` имеет бесконечное множество решений.
Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`
Частные случаи для синуса и косинуса в графиках.
3. Уравнение `tg x=a`
Имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arctg a + \pi n, n \in Z`
4. Уравнение `ctg x=a`
Также имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arcctg a + \pi n, n \in Z`
Формулы корней тригонометрических уравнений в таблице
Для синуса:Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:
Методы решения тригонометрических уравнений
Решение любого тригонометрического уравнения состоит из двух этапов:
- с помощью тригонометрических формул преобразовать его до простейшего;
- решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.
Рассмотрим на примерах основные методы решения.
Алгебраический метод.
В этом методе делается замена переменной и ее подстановка в равенство.
Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`
Решение. Используя формулы приведения, имеем:
`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,
делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,
находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:
1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.
2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.
Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.
Разложение на множители.
Пример. Решить уравнение: `sin x+cos x=1`.
Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:
`sin x — 2sin^2 x/2=0`,
`2sin x/2 cos x/2-2sin^2 x/2=0`,
`2sin x/2 (cos x/2-sin x/2)=0`,
- `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
- `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.
Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.
Приведение к однородному уравнению
Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:
`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).
Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.
Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.
Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:
`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,
`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`
`sin^2 x+sin x cos x — 2 cos^2 x=0`.
Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:
`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:
- `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
- `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.
Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.
Переход к половинному углу
Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.
Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`
`4 tg^2 x/2 — 11 tg x/2 +6=0`
Применив описанный выше алгебраический метод, получим:
- `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
- `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.
Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.
Введение вспомогательного угла
В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:
Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a
`cos \varphi sin x + sin \varphi cos x =C`.
Подробнее рассмотрим на следующем примере:
Пример. Решить уравнение: `3 sin x+4 cos x=2`.
Решение. Разделим обе части равенства на `sqrt <3^2+4^2>`, получим:
`3/5 sin x+4/5 cos x=2/5`.
Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:
`cos \varphi sin x+sin \varphi cos x=2/5`
Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:
`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,
`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.
Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.
Дробно-рациональные тригонометрические уравнения
Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.
Пример. Решить уравнение. `\frac
Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:
Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.
Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.
- `sin x=0`, `x=\pi n`, `n \in Z`
- `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.
Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.
Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.
Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!
Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.
Источник
Решение тригонометрических уравнений — 39 примеров!
Привет, самый лучший ученик во Вселенной!
Сегодня мы с тобой изучим, как решать одну из разновидностей уравнений – тригонометрические. Мы решим 39(!) примеров, от самых простых, до самых сложных.
И станем на шаг ближе к заветной цели – сдать ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!
Тригонометрические уравнения — коротко о главном
Тригонометрическое уравнение – это уравнение, в котором неизвестная находится строго под знаком тригонометрической функции.
Существует два способа решения тригонометрических уравнений:
Первый способ – с использованием формул.
Второй способ – через тригонометрическую окружность.
Тригонометрическая окружность позволяет измерять углы, находить их синусы, косинусы и прочее.
Чтобы уметь решать тригонометрические уравнения необходимо знать как минимум следующее:
- что такое синус, косинус, тангенс, котангенс;
- какие знаки принимает та или иная тригонометрическая функция в разных четвертях тригонометрической окружности;
- какие из этих функций нечётные, а какие – чётные;
- знание значений тригонометрических функций в основных углах 1 четверти.
Если ты что-то не знаешь, повтори следующие разделы:
Этого будет вполне достаточно. Если это по ходу моего повествования окажется не так, то не сердись, придётся вспомнить что-нибудь ещё, не упомянутое здесь.
Простейшие тригонометрические уравнения
Что же это такое, как ты думаешь? Является ли, например, уравнение
Ты и сам прекрасно понимаешь, что нет! Потому что ни одной тригонометрической функции \( \displaystyle \left( sin x,cos x,tg x,ctg x \right)\) в нём и в помине нет!
А что насчёт вот такого уравнения?
И опять ответ отрицательный!
Это так называемое уравнение смешанного типа.
Оно содержит как тригонометрическую составляющую, так и линейную (\( \displaystyle 3x\)).
Некоторые типы подобных уравнений мы будем с тобой решать в следующих раздела этой статьи.
Но вернёмся к вопросу: «Что же такое тригонометрические уравнения?»
Тригонометрические уравнения –это уравнения, в которых неизвестная находится строго под знаком тригонометрической функции!
- \( \displaystyle 6co<
^<2>>x+5sin-7=0\) - \( \displaystyle sin\pi \sqrt
=-1\) - \( \displaystyle \frac<3><5>sinx+\frac<4><5>cosx=1\) и т.д.
Однако для начала мы не будем решать сложные и иногда неприступные тригонометрические уравнения, а ограничимся самыми простыми уравнениями вида:
- \( \displaystyle sinf\left( x \right)=a\)
- \( \displaystyle cosf\left( x \right)=a\)
- \( \displaystyle tgf\left( x \right)=a\)
- \( \displaystyle ctgf\left( x \right)=a\)
Где \( \displaystyle a\) – некоторое постоянное число.
Например: \( \displaystyle 0,5;
\( \displaystyle f\left( x \right)\) – некоторая функция, зависящая от искомой переменной \( \displaystyle x\), например \( \displaystyle f\left( x \right)=x,
f\left( x \right)=2-x,
f\left( x \right)=\frac<\pi x><7>\) и т. д.
Такие уравнения называются простейшими!
Основная цель решения ЛЮБОГО тригонометрического уравнения – это свести его к виду простейшего!
Для этого, как правило, используют аппарат, который я описал в разделе «Формулы тригонометрии«
Так что очень важно, я бы даже сказал, жизненно необходимо научиться решать простейшие уравнения, ибо они – фундамент для решения сложных примеров.
Как часто тригонометрические уравнения встречаются на ЕГЭ?
Тригонометрические уравнения могут встретиться до четырех раз в заданиях ЕГЭ. Это может быть:
- Задача №5 (простейшее тригонометрическое уравнение – встречается время от времени);
- Задача №10 (задача с прикладным содержанием, которая включает в себя решение тригонометрического уравнения – встречается изредка);
- Задача №12 (она на производную, но в конечном счёте сводится к решению простейшего тригонометрического уравнения – ЧАСТО ВСТРЕЧАЕТСЯ В ЕГЭ)
- Задача №13 – даёт 2 первичных балла – (решение тригонометрического уравнения средней или высокой сложности – ОЧЕНЬ ЧАСТО, ПРАКТИЧЕСКИ ВСЕГДА!)
Так что, как ты понимаешь, при некоторых раскладах, навык решения данного вида уравнений может добавить в твою копилку аж 5 первичных баллов из 32!
Два способа решения тригонометрических уравнений – через формулы и по кругу
В принципе, я не могу сказать, что легче: держать в голове, как строится круг, или помнить 4 формулы.
Тут решать тебе самому, однако я всё же предпочитаю решать данные уравнения через формулы, поэтому здесь я буду описывать именно этот метод.
Вначале мы начнём с «самых простейших» из простейших уравнений вида:
Я хочу сразу оговориться вот о чем, будь внимателен:
Уравнения вида: \( \displaystyle sinf\left( x \right)=a\), \( \displaystyle cosf\left( x \right)=a\) имеют смысл только тогда, когда \( \displaystyle -1\le \text\le 1\)
То есть, тебе не надо знать вообще никаких формул, чтобы спокойно ответить, что уравнения, например:
\( \displaystyle cos\left( 3
\( \displaystyle sin\left( 2<
Корней не имеют.
Потому что они «не попадают» в промежуток от минус единицы до плюс единицы.
Ещё раз скажу: внимательно обдумай эти слова, они уберегут тебя от многих глупых ошибок.
Для остальных же случаев тригонометрические формулы такие как в этой таблице.
\( \displaystyle A\) | \( \displaystyle a\) | \( \displaystyle -1\) | \( \displaystyle 0\) | \( \displaystyle 1\) |
---|---|---|---|---|
\( \displaystyle \sin x=A\) | \( \displaystyle <<\left( -1 \right)>^ | \( \displaystyle -\frac<\pi ><2>+2\pi n\) | \( \displaystyle \pi n\) | \( \displaystyle \frac<\pi ><2>+2\pi n\) |
\( \displaystyle \cos x=A\) | \( \displaystyle \pm \arccos \alpha +2\pi n\) | \( \displaystyle \pi +2\pi n\) | \( \displaystyle \frac<\pi ><2>+\pi n\) | \( \displaystyle 2\pi n\) |
\( \displaystyle tgx=A\) | \( \displaystyle arctg\alpha +\pi n\) | \( \displaystyle -\frac<\pi ><4>+\pi n\) | \( \displaystyle \pi n\) | \( \displaystyle \frac<\pi ><4>+\pi n\) |
\( \displaystyle ctgx=A\) | \( \displaystyle arcctg\alpha +\pi n\) | \( \displaystyle \frac<3\pi ><4>+\pi n\) | \( \displaystyle \frac<\pi ><2>+\pi n\) | \( \displaystyle \frac<\pi ><4>+\pi n\) |
На самом деле в этой таблице данных немного больше, чем нужно.
Тебе нужно лишь запомнить первые два её столбца, другие столбцы – частные случаи решения тригонометрических уравнений.
Я, допустим, никогда не утруждаю себя их запоминанием, а вывожу ответ из основных формул.
Глядя на таблицу, не возникло ли у тебя пары вопросов?
У меня бы возникли вот какие:
Что такое \( \displaystyle n\) и что такое, например \( \displaystyle arcsin\alpha
Отвечаю на все по порядку:
\( \displaystyle n\) – это любое целое число \( \displaystyle \left( 0,\text< >1,\text< >-1,\text< >2,\text< >-2,\text< >\ldots .\text < >\right)\).
В чем уникальная особенность тригонометрических уравнений перед всеми остальными, которые ты изучал?
ОНИ ИМЕЮТ БЕСКОНЕЧНОЕ КОЛИЧЕСТВО КОРНЕЙ.
И число \( \displaystyle n\) и служит для обозначения этой «бесконечности».
Конечно, вместо \( \displaystyle n\) можно писать любую другую букву, только не забывай добавить в ответе: \( \displaystyle n\in Z\) – что означает, что \( \displaystyle n\) – есть любое целое число.
Теперь насчёт арксинуса и других «арок». Вообще, так записываются обратные тригонометрические функции и понимать, скажем, \( \displaystyle arcsin\alpha \) надо как «угол, синус которого равен \( \displaystyle \alpha \)«
- \( \displaystyle arcsin\alpha\)– угол, синус которого равен \( \displaystyle \alpha\)
- \( \displaystyle arccos\alpha\)– угол, косинус которого равен \( \displaystyle \alpha\)
- \( \displaystyle \alpha\)\( \displaystyle arctg\alpha\)– угол, тангенс которого равен \( \displaystyle \alpha\)
- \( \displaystyle \alpha\)\( \displaystyle arcctg\alpha\) – угол, котангенс которого равен \( \displaystyle \alpha\)
- \( \displaystyle \arcsin \left( 0 \right)=0,\)
- \( \displaystyle \arccos \left( \frac<\sqrt<2>><2>\right)=\frac<\pi ><4>,\)
- \( \displaystyle \ arctg\left( 1 \right)=\frac<\pi ><4>,\)
- \( \displaystyle \arcsin \left( 0,5 \right)=\frac<\pi ><6>,\)
- \( \displaystyle \arccos \left( \frac<\sqrt<3>><2>\right)=\frac<\pi ><6>,\)
- \( \displaystyle \ arctg\left( \sqrt <3>\right)=\frac<\pi ><3>\)
Алгоритм вычисления арксинусов и других «арок»
- Смотрим на то, что стоит под «аркой» – какое там число
- Смотрим, какая у нас «арка» – для синуса ли, или для косинуса, тангенса или котангенса
- Смотрим, чему равен угол (1 четверти), для которого синус, косинус, тангенс, котангенс равен числу, стоящему под аркой
- Записываем ответ
Вот простой пример вычисления аркосинуса:
\( \displaystyle \arccos \left( \frac<\sqrt<3>> <2>\right)\)
- Под аркой число \( \displaystyle \frac<\sqrt<3>><2>\)
- Арка для функции – косинус!
- Косинус какого угла равен \( \displaystyle \frac<\sqrt<3>><2>\)? Угла \( \displaystyle \frac<\pi ><6>\) (или \( \displaystyle 30\) градусов!)
- Тогда \( \displaystyle \arccos \left( \frac<\sqrt<3>><2>\right)=\frac<\pi ><6>\)
\( \displaystyle \frac<\pi ><6>\) и \( \displaystyle \frac<\pi ><3>\).
Если «арка» берется от отрицательного числа?
Всё ли я сказал про «арки»? Почти что да! Остался вот какой момент.
Что делать, если «арка» берётся от отрицательного числа?
Лезть в таблицу – как бы не так! Для арок выполняются следующие формулы:
- \( \displaystyle \text
\left( -\alpha \right)=-\text \alpha \) - \( \displaystyle \text
\left( -\alpha \right)=-\text \alpha \)
И внимание.
Чтобы запомнить, ориентируемся на обычные тригонометрические функции: грубо говоря, синус и тангенс мы смотрим на тригонометрической окружности по вертикальной оси, а косинус и котангенс – по горизонтальной.
Соответственно, для арксинуса и арктангенса выбираем две четверти по вертикали: первую и четвёртую (минусик выносится из аргумента и ставится перед функцией), а для арккосинуса и арккотангенса – по горизонтали: первую и вторую.
В первой и второй четвертях аргумент уже не может быть отрицательным, поэтому и получаются формулы не совсем похожими.
Ну всё, теперь мы можем приступать к решению простейших уравнений!
Решение 11-ти простейших тригонометрических уравнений
Уравнение 1. \( \displaystyle sin\left( x \right)=0,5\)
Запишу по определению:
\( \displaystyle x=<<\left( -1 \right)>^
Всё готово, осталось только упростить, посчитав значение арксинуса.
Источник