Способы решений логические высказывания

Как решать логические и математические задачи

Решение задач на логику — отличная гимнастика для ума детей и взрослых на каждый день. На ЛогикЛайк более 3500 заданий с ответами и пояснениями, полноценный учебный комплекс для развития логики и способностей к математике.

Решаем логические задачи

Чтобы научиться решать типовые логические задачи, простые и нестандартные математические задачи, важно знать основные приемы и методы их решения. Ведь решить одну и ту же задачу и прийти к правильному ответу во многих случаях можно разными способами.

Знание и понимание различных методов решения поможет определить, какой способ подойдет лучше в каждом конкретном случае, чтобы выбрать наиболее быстрый и простой путь получения ответа.

К «классическим» логическим задачам относятся текстовые задачи, цель решения которых состоит в распознавании объектов или расположении их в определенном порядке в соответствии с заданными условиями.

Более сложными и увлекательными типами заданий являются задачи, в которых отдельные утверждения являются истинными, а другие ложными. Задачи на перемещение, перекладывание, взвешивание, переливание — самые яркие примеры широкого ряда нестандартных задач на логику.

Основные методы решения логических задач

  • метод рассуждений;
  • с помощью таблиц истинности;
  • метод блок-схем;
  • средствами алгебры логики (алгебры высказываний);
  • графический (в том числе, «дерево логических условий», метод кругов Эйлера);
  • метод математического бильярда.

Давайте рассмотрим подробнее с примерами три популярных способа решения логических задач, которые мы рекомендуем использовать в начальной школе (детям 6-12 лет):

  • метод последовательных рассуждений;
  • разновидность метода рассуждений — «с конца»;
  • табличный способ.

Метод последовательных рассуждений

Самый простой способ решения несложных задач заключается в последовательных рассуждениях с использованием всех известных условий. Выводы из утверждений, являющихся условиями задачи, постепенно приводят к ответу на поставленный вопрос.

На столе лежат Голубой , Зеленый , Коричневый и Оранжевый карандаши.

Третьим лежит карандаш, в имени которого больше всего букв. Голубой карандаш лежит между Коричневым и Оранжевым .

Разложи карандаши в описанном порядке.

Рассуждаем. Последовательно используем условия задачи для формулирования выводов о позиции, на которой должен лежать каждый следующий карандаш.

  • Больше всего букв в слове «коричневый», значит, он лежит третьим.
  • Известно, что голубой карандаш лежит между коричневым и оранжевым. Справа от коричневого есть только одна позиция, значит, расположить голубой между коричневым и другим карандашом возможно только слева от коричневого.
  • Следующий вывод на основе предыдущего: голубой карандаш лежит на второй позиции, а оранжевый — на первой.
  • Для зеленого карандаша осталась последняя позиция — он лежит четвертым.

Метод «с конца»

Такой способ решения является разновидностью метода рассуждений и отлично подходит для задач, в которых нам известен результат совершения определенных действий, а вопрос состоит в восстановлении первоначальной картины.

Бабушка испекла для троих внуков рогалики и оставила их на столе. Коля забежал перекусить первым. Сосчитал все рогалики, взял свою долю и убежал.
Аня зашла в дом позже. Она не знала, что Коля уже взял рогалики, сосчитала их и, разделив на троих, взяла свою долю.
Третьим пришел Гена, который тоже разделил остаток выпечки на троих и взял свою долю.
На столе осталось 8 рогаликов.

Сколько рогаликов из восьми оставшихся должен съесть каждый, чтобы в результате все съели поровну?

Начинаем рассуждение «с конца».
Гена оставил для Ани и Коли 8 рогаликов (каждому по 4). Получается, и сам он съел 4 рогалика: 8 + 4 = 12.
Аня оставила для братьев 12 рогаликов (каждому по 6). Значит, и сама она съела 6 штук: 12 + 6 = 18.
Коля оставил ребятам 18 рогаликов. Значит, сам съел 9: 18 + 9 = 27.

Бабушка положила на стол 27 рогаликов, рассчитывая, что каждому достанется по 9 штук. Поскольку Коля уже съел свою долю, Аня должна съесть 3, а Гена — 5 рогаликов.

Решение логических задач с помощью таблиц истинности

Суть метода состоит в фиксации условий задачи и полученных результатов рассуждений в специально составленных под задачу таблицах. В зависимости от того, является высказывание истинным или ложным, соответствующие ячейки таблицы заполняются знаками «+» и «-» либо «1» и «0».

Три спортсмена ( красный , синий и зеленый ) играли в баскетбол.
Когда мяч оказался в корзине, красный воскликнул: «Мяч забросил синий».
Синий возразил: «Мяч забросил зеленый».
Зеленый сказал: «Я не забрасывал».

Кто забросил мяч, если только один из троих сказал неправду?

Сначала таблицу составляют: слева записывают все утверждения, которые содержатся в условии, а сверху — возможные варианты ответа.

Затем таблицу последовательно заполняют: верные утверждения отмечают знаком «+», а ложные утверждения — знаком «-«.

Рассмотрим первый вариант ответа («мяч забросил красный «), проанализируем утверждения, записанные слева, и заполним первый столбик.
Исходя из нашего предположения («мяч забросил красный «), утверждение «мяч забросил синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый» также ложь. Заполняем ячейку знаком «-«.
Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».

Рассмотрим второй вариант ответа (предположим, что мяч забросил зеленый ) и заполним второй столбик.
Утверждение «мяч забросил Синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый « — истина. Заполняем ячейку знаком «+».
Утверждение зеленого «Я не забрасывал» – ложь. Ставим в ячейке «-«.

И, наконец, третий вариант: предположим, что «мяч забросил синий «.
Тогда утверждение «мяч забросил синий « — истина. Ставим в ячейке «+».
Утверждение «мяч забросил зеленый» — ложь. Заполняем ячейку знаком «-«. Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».

Так как по условию лишь один из троих ребят сказал неправду, в заполненной таблице выбираем такой вариант ответа, где будет только одно ложное утверждение (в столбце один знак «-«). Подходит третий столбец.

Значит, правильный ответ – мяч забросил синий.

Метод блок-схем

Метод блок-схем считается оптимальным вариантом для решения задач на взвешивание и на переливание жидкостей. Альтернативный способ решения этого типа задач — метод перебора вариантов — не всегда является оптимальным, да и назвать его системным довольно сложно.

  • графически (блок-схемой) описываем последовательность выполнения операций;
  • определяем порядок их выполнения;
  • в таблице фиксируем текущие состояния.
Читайте также:  Как быстро вылечить насморк домашним способом

Подробнее об этом и других способах решения логических задач с примерами и описанием хода решения мы рассказываем в полном Курсе ЛогикЛайк по развитию логического мышления.

Отгадывайте самые интересные загадки на логику, собранные специально для постоянных читателей нашего блога и учеников LogicLike, решайте логические задачи онлайн вместе с тысячами детей и взрослых!

Учим детей 5-12 лет решать любые логические и математические задачи. Более 3500 занимательных заданий с ответами и пояснениями.

Источник

Логика высказываний: теория и применение. Примеры решений задач

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Логика высказываний: определение и применение

Логика высказываний, называемая также пропозициональной логикой — раздел математики и логики, изучающий логические формы сложных высказываний, построенных из простых или элементарных высказываний с помощью логических операций.

Высказываниями принято считать такие предложения (написанные на «словесном» либо математическом языке), о которых можно сказать одно из двух: либо они являются истинными, либо ложными.

С математическими высказываний проще всего: они всегда имеют либо значение «истина», либо значение «ложь». Для высказываний, сделанных на «словесном» языке, понятия «истинности» и «ложности» несколько более расплывчаты. Однако, например, такие словесные формы, как «Иди домой» и «Идёт ли дождь?», не являются высказываниями. Поэтому понятно, что высказываниями являются такие словесные формы, в которых что-либо утверждается. Не являются высказываниями вопросительные или восклицательные предложения, обращения, а также пожелания или требования. Их невозможно оценить значениями «истина» и «ложь».

Логика высказываний отвлекается от содержательной нагрузки высказываний и изучает их истинностное значение, то есть является ли высказывание истинным или ложным.

Рисунок слева — иллюстрация явления, известного как «Парадокс лжеца». При этом, на взгляд автора проекта, такие парадоксы возможны только в средах, несвободных от политических заморочек, где на ком-то могут априори поставить клеймо лжеца. В естественном многослойном мире на предмет «истины» или «лжи» оцениваются только отдельно взятые высказывания. И далее на этом уроке вам представится возможность самим оценить на этот предмет немало высказываний (а затем посмотреть правильные ответы). В том числе сложных высказываний, в которых более простые связаны между собой знаками логических операций. Но прежде рассмотрим сами эти операции над высказываниями.

Логические операции над высказываниями

Итак, высказывания можно рассмотривать как величину, которая может принимать два значения: «истина» и «ложь».

Например, даны суждения: «собака — животное», «Париж — столица Италии», «3 AB и которое истинно тогда и только тогда, когда A и B истинны. В обычной речи этой операции соответствует соединение высказываний связкой «и».

Таблица истинности для конъюнкции:

A B AB
И И И
И Л Л
Л И Л
Л Л Л

2. Вторая логическая операция над высказываниями A и B — дизъюнкция, выражаемая в виде AB , определяется следующим образом: оно истинно тогда и только тогда, когда хотя бы одно из первоначальных высказываний истинно. В обычной речи эта операция соответствует соединению высказываний связкой «или». Однако здесь мы имеем не разделительное «или», которое понимается в смысле «либо-либо», когда A и B не могут быть оба истинны. В определении логики высказываний AB истинно и при истинности лишь одного из высказываний, и при истинности обоих высказываний A и B.

Таблица истинности для дизъюнкции:

A B AB
И И И
И Л И
Л И И
Л Л Л

3. Третья логическая операция над высказываниями A и B, выражаемая в виде AB ; полученное таким образом высказывание ложно тогда и только тогда, когда A истинно, а B ложно. A называется посылкой, Bследствием, а высказывание ABследованием, называемая также импликацией. В обычной речи эта операция соответствует связке «если — то»: «если A, то B«. Но в определении логики высказываний это высказывание всегда истинно независимо от того, истинно или ложно высказывание B. Это обстоятельство можно кратко сформулировать так: «из ложного следует всё, что угодно». В свою очередь, если A истинно, а B ложно, то всё высказывание AB ложно. Оно будет истинным тогда и только тогда, когда и A, и B истинны. Кратко это можно сформулировать так: «из истинного не может следовать ложное».

Таблица истинности для следования (импликации):

A B AB
И И И
И Л Л
Л И И
Л Л И

4. Четвёртая логическая операция над высказываниями, точнее над одним высказыванием, называется отрицанием высказывания A и обозначается

A (можно встретить также употребление не символа

, а символа ¬, а также верхнего надчёркивания над A).

A есть высказывание, которое ложно, когда A истинно, и истинно, когда A ложно.

Таблица истинности для отрицания:

A Л И И Л

5. И, наконец, пятая логическая операция над высказываниями называется эквивалентностью и обозначается AB . Полученное таким образом высказывание AB есть высказывание истинное тогда и только тогда, когда A и B оба истинны или оба ложны.

Таблица истинности для эквивалентности:

A B AB BA AB
И И И И И
И Л Л И Л
Л И И Л Л
Л Л И И И

В большинстве языков программирования есть специальные символы для обозначения логических значений высказываний, записываются они почти во всех языках как true (истина) и false (ложь).

Подытожим вышесказанное. Логика высказываний изучает связи, которые полностью определяются тем, каким образом одни высказывания строятся из других, называемых элементарными. Элементарные высказывания при этом рассматриваются как целые, не разложимые на части.

Систематизируем в таблице ниже названия, обозначения и смысл логических операций над высказываниями (они нам вскоре вновь понадобятся для решения примеров).

Связка Обозначение Название операции
не отрицание
и конъюнкция
или дизъюнкция
если . то. импликация
тогда и только тогда эквивалентность

Для логических операций верны законы алгебры логики, которые можно использовать для упрощения логических выражений. При этом следует отметить, что в логике высказываний отвлекаются от смыслового содержания высказывания и ограничиваются рассмотрением его с той позиции, что оно либо истинно, либо ложно.

Пример 1. Вычислите логические значения следующих высказываний:

3) («Сосна» = «Дуб») ИЛИ («Вишня» = «Клён») ;

6) («Глаза даны, чтобы видеть») И («Под третьим этажом находится второй этаж») ;

7) (6/2 = 3) ИЛИ (7*5 = 20) .

1) Значение высказывания в первых скобках равно «истина», значение выражения во вторых скобках — также истина. Оба высказывания соединены логической операцией «И» (смотрим правила для этой операции выше), поэтому логическое значение всего данного высказывания — «истина».

2) Значение высказывания в скобках — «ложь». Перед этим зтим высказыванием стоит логическая операция отрицания, поэтому логическое значение всего данного высказывания — «истина».

3) Значение высказывания в первых скобках — «ложь», значение высказывания во вторых скобках — также «ложь». Высказывания соединены логической операцией «ИЛИ» и ни одно из высказываний не имеет значения «истина». Поэтому логическое значение всего данного высказывания — «ложь».

Читайте также:  Определите способ словообразования глушь

4) Значение высказывания в скобках — «ложь». Перед этим высказыванием стоит логическая операция отрицания. Поэтому логическое значение всего данного высказывания — «истина».

5) В первых скобках отрицается высказывание во внутренних скобках. Это высказывание во внутренних скобках имеет значение «ложь», следовательно, его отрицание будет иметь логическое значение «истина». Высказывание во вторых скобках имеет значение «ложь». Два этих высказывания соединены логической операцией «И», то есть получается «истина И ложь». Следовательно, логическое значение всего данного высказывания — «ложь».

6) Значение высказывания в первых скобках — «истина», значение высказывания во вторых скобках — также «истина». Два этих высказывания соединены логической операцией «И», то есть получается «истина И истина». Следовательно, логическое значение всего данного высказывания — «истина».

7) Значение высказывания в первых скобках — «истина». Значение высказывания во вторых скобках — «ложь». Два этих высказывания соединены логической операцией «ИЛИ», то есть получается «истина ИЛИ ложь». Следовательно, логическое значение всего данного высказывания — «истина».

Пример 2. Запишите с помощью логических операций следующие сложные высказывания:

1) «Пользователь не зарегистрирован»;

2) «Сегодня воскресенье и некоторые сотрудники находятся на работе»;

3) «Пользователь зарегистрирован тогда и только тогда, когда отправленные пользователем данные признаны годными».

1) p — одиночное высказывание «Пользователь зарегистрирован», логическая операция: ;

2) p — одиночное высказывание «Сегодня воскресенье», q — «Некоторые сотрудники находятся на работе», логическая операция: ;

3) p — одиночное высказывание «Пользователь зарегистрирован», q — «Отправленные пользователем данные признаны годными», логическая операция: .

Решить примеры на логику высказываний самостоятельно, а затем посмотреть решения

Пример 3. Вычислите логические значения следующих высказываний:

1) («В минуте 70 секунд») ИЛИ («Работающие часы показывают время») ;

2) (28 > 7) И (300/5 = 60) ;

3) («Телевизор — электрический прибор») И («Стекло — дерево») ;

4) Не((300 > 100) ИЛИ («Жажду можно утолить водой»)) ;

Пример 4. Запишите с помощью логических операций следующие сложные высказывания и вычислите их логические значения:

1) «Если часы неправильно показывают время, то можно невовремя прийти на занятия»;

2) «В зеркале можно увидеть своё отражение и Париж — столица США»;

3) Не «дуб — дерево».

Пример 5. Определите логическое значение выражения

q = «Яблоко = Апельсин» ,

s = «Шапка покрывает голову» .

Формулы логики высказываний

Понятие логической формы сложного высказывания уточняется с помощью понятия формулы логики высказываний.

В примерах 1 и 2 мы учились записывать с помощью логических операций сложные высказывания. Вообще-то они называются формулами логики высказываний.

Для обозначения высказываний, как и упомянутом примере, будем продолжать использовать буквы

Эти буквы будут играть роль переменных, принимающих в качестве значений истинностные значения «истина» и «ложь». Эти переменные называются также пропозициональными переменными. Мы будем далее называть их элементарными формулами или атомами.

Для построения формул логики высказываний кроме указанных выше букв используются знаки логических операций

а также символы, обеспечивающие возможность однозначного прочтения формул — левая и правая скобки.

Понятие формулы логики высказываний определим следуюшим образом:

1) элементарные формулы (атомы) являются формулами логики высказываний;

2) если A и B — формулы логики высказываний, то

3) только те выражения являются формулами логики высказываний, для которых это следует из 1) и 2).

Определение формулы логики высказываний содержит перечисление правил образования этих формул. Согласно определению, всякая формула логики высказываний либо есть атом, либо образуется из атомов в результате последовательного применения правила 2).

Пример 6. Пусть p — одиночное высказывание (атом) «Все рациональные числа являются действительными», q — «Некоторые действительные числа — рациональные числа», r — «некоторые рациональные числа являются действительными». Переведите в форму словесных высказываний следующие формулы логики высказываний:

1) ;

2) ;

3) ;

4) ;

5) ;

6) .

1) «нет действительных чисел, которые являются рациональными»;

2) «если не все рациональные числа являются действительными, то нет рациональных чисел, являющихся действительными»;

3) «если все рациональные числа являются действительными, то некоторые действительные числа — рациональные числа и некоторые рациональные числа являются действительными»;

4) «все действительные числа — рациональные числа и некоторые действительные числа — рациональные числа и некоторые рациональные числа являются действительными числами»;

5) «все рациональные числа являются действительными тогда и только тогда, когда не имеет место быть, что не все рациональные числа являются действительными»;

6) «не имеет места быть, что не имеет место быть, что не все рациональные числа являются действительными и нет действительных чисел, которые являются рациональными или нет рациональных чисел, которые являются действительными».

Пример 7. Составьте таблицу истинности для формулы логики высказываний , которую в таблице можно обозначить f .

Решение. Составление таблицы истинности начинаем с записи значений («истина» или «ложь») для одиночных высказываний (атомов) p , q и r . Все возможные значения записываются в восемь строк таблицы. Далее, определяя значения операции импликации, и продвигаясь вправо по таблице, помним, что значение равно «лжи» тогда, когда из «истины» следует «ложь».

p q r f
И И И И И И И И
И И Л И И И Л И
И Л И И Л Л Л Л
И Л Л И Л Л И И
Л И И Л И Л И И
Л И Л Л И Л И Л
Л Л И И И И И И
Л Л Л И И И Л И

Заметим, что никакой атом не имеет вида

Число скобок в формулах логики высказываний можно уменьшить, если принять, что

1) в сложной формуле будем опускать внешнюю пару скобок;

2) упорядочим знаки логических операций «по старшинству»:

В этом списке знак ↔ имеет самую большую область действия, а знак

— самую маленькую. Под областью действия знака операции понимаются те части формулы логики высказываний, к которым применяется (на которые действует) рассматриваемое вхождение этого знака. Таким образом, можно опускать во всякой формуле те пары скобок, которые можно восстановить, учитывая «порядок старшинства». А при восстановлении скобок сначала расставляются все скобки, относящиеся ко всем вхождениям знака

(при этом мы продвигаемся слева направо), затем ко всем вхождениям знака ∧ и так далее.

Пример 8. Восстановите скобки в формуле логики высказываний B

Решение. Скобки восстанавливаются пошагово следующим образом:

Не всякая формула логики высказываний может быть записана без скобок. Например, в формулах А → (BC) и

(AB) дальнейшее исключение скобок невозможно.

Тавтологии и противоречия

Логические тавтологии (или просто тавтологии) — это такие формулы логики высказываний, что если буквы произвольным образом заменить высказываниями (истинными или ложными), то в результате всегда получится истинное высказывание.

Так как истинность или ложность сложных высказываний зависит лишь от значений, а не от содержания высказываний, каждому из которых соответствует определённая буква, то проверку того, является ли данное высказывание тавтологией, можно подставить следующим способом. В исследуемом выражении на место букв подставляются значения 1 и 0 (соответственно «истина» и «ложь») всеми возможными способами и с использованием логических операций вычисляются логические значения выражений. Если все эти значения равны 1, то исследуемое выражение есть тавтология, а если хотя бы одна подстановка даёт 0, то это не тавтология.

Читайте также:  Доверчиво каким способом образовано

Таким образом, формула логики высказываний, которая принимает значение «истина» при любом распределении значений входящих в эту формулу атомов, называется тождественно истинной формулой или тавтологией.

Противоположный смысл имеет логическое противоречие. Если все значения высказываний равны 0, то выражение есть логическое противоречие.

Таким образом, формула логики высказываний, которая принимает значение «ложь» при любом распределении значений входящих в эту формулу атомов, называется тождественно ложной формулой или противоречием.

Кроме тавтологий и логических противоречий существуют такие формулы логики высказываний, которые не являются ни тавтологиями, ни противоречиями.

Пример 9. Составьте таблицу истинности для формулы логики высказываний и определите, является ли она тавтологией, противоречием или ни тем, ни другим.

Решение. Составляем таблицу истинности:

И И И И И
И Л Л Л И
Л И Л И И
Л Л Л Л И

В значениях импликации не встречаем строку, в которой из «истины» следует «ложь». Все значения исходного высказывания равны «истине». Следовательно, данная формула логики высказываний является тавтологией.

Пример 10. Составьте таблицу истинности для формулы логики высказываний и определите, является ли она тавтологией, противоречием или ни тем, ни другим.

Решение. Составляем таблицу истинности:

И И И И И И
И И Л И Л Л
И Л И Л И И
И Л Л Л Л И
Л И И Л И И
Л И Л Л Л И
Л Л И Л И И
Л Л Л Л Л И

Среди значений данного высказывания одно — «ложь», остальные — «истина». Следовательно, данная формула логики высказываний не является ни тавтологией, ни противоречием.

Заставляем компьютер понимать «если . то. «

То, что мы называем логическими операциями, впервые появилось предположительно в Древней Греции для доказательства философских постулатов. А в наше время логические операции наиболее широко применяются в компьютерной технике. Но при всём этом компьютер «не умеет» выполнять логическую операцию импликации. Она компьютеру «не понятна». Есть, однако, способ заставить компьютер понимать условие «если . то», соответствующее, как известно, импликации. Для этого вместо составного оператора «если p, то q» нужно использовать составной оператор «не p или q«. То есть, вместо .

Как видно ниже, таблица истинности для такой замещающей логической операции идентична таблице истинности для импликации.

И И И
И Л Л
Л И И
Л Л И

Пример 11. Перепишите формулу логики высказываний без использования импликации и эквиваленции, пользуясь тождеством и законами де Моргана:

;

.

Заменяем импликацию между двумя парами скобок, отрицая самый левый знак отрицания:

.

Убираем эквиваленцию между p и q и между q и не r :

.

Используя закон де Моргана, немного упрощаем и окончательно получаем:

.

Посылки и выводы. Валидный и не валидный аргумент

Пусть есть высказывания, которые можно назвать посылками. Пусть также есть высказывание, которое можно назвать выводом. Словосочетание «можно назвать» используется при условии, что посылки связываются с выводом. То есть, из посылок логически следует вывод. Тогда, если посылки имеют значения «истина» и вывод тоже имеет значение «истина», то аргумент является валидным. Если же посылки имеют значения «истина», а вывод имеет значение «ложь», то аргумент не является валидным. Синонимы понятия «валидность» (в рассматриваемом здесь значении) — «логическая правильность», «резонность».

Пример валидного аргумента:

  • Посылка. A и B — программисты
  • Посылка. A и B разрабатывают программы для бухгалтеров
  • Вывод. Есть программисты, которые разрабатывают программы для бухгалтеров

То есть, из посылок логически следует вывод.

Пример не валидного аргумента:

  • Посылка. Запись числа может содержать запятую
  • Посылка. В предложении может быть запятая
  • Вывод. Есть числа, которые называются предложениями

То есть, из посылок логически не следует вывод.

Пример 12. Проверьте валидность аргумента, если

  • Посылка.
  • Посылка.
  • Вывод.

Решение. Составляем таблицу истинности:

И И Л И И И
И Л Л Л Л И
Л И И И И Л
Л Л И И И И

В третьей строке обе посылки истинны, а вывод — ложный. Следовательно, аргумент не валидный. Таким образом, в аналогичных задачах подозрительными являются те строки, в которых все посылки истинны. Если вывод также истинный, то аргумент валидный, если ложный, то аргумент не валидный, как в этом примере. Если же посылки или обе ложны, или ложна одна из них, то такие строки не играют роли в проверке аргумента на валидность, каким бы ни было значение вывода.

Применение логики высказываний в информатике и программировании

Логика высказываний применяется в информатике и программировании в виде объявления логических переменных и присвоения им логических значений «ложь» или «истина», от которых зависит ход дальнейшего исполнения программы. В небольших программах, где задействована лишь одна логическая переменная, этой логической переменной часто даётся имя, например, «флаг» («flag») и подразумевается, что «флаг поднят», когда значение этой переменной — «истина» и «флаг опущен», когда значение этой переменной — «ложь». В программах большого объёма, в которых несколько или даже очень много логических переменных, от профессионалов требуется придумывать имена логических переменных, имеющих форму высказываний и смысловую нагрузку, отличающую их от других логических переменных и понятных другим профессионалам, которые будут читать текст этой программы.

Так, может быть объявлена логическая переменная с именем «ПользовательЗарегистрирован» (или его англоязычный аналог), имеющая форму высказывания, которой может быть присвоено логическое значение «истина» при выполнении условий, что данные для регистрации отправлены пользователем и эти данные программой признаны годными. В дальнейших вычислениях значения переменных могут меняться в зависимости от того, какое логическое значение («истина» или «ложь») имеет переменная «ПользовательЗарегистрирован». В других случах переменной, например, с именем «ДоДняХОсталосьБолееТрёхДней», может быть присвоено значение «Истина» до некоторого блока вычислений, а в ходе дальнейшего исполнения программы это значение может сохраняться или меняться на «ложь» и от значения этой переменной зависит ход дальнейшего исполнения программы.

Если в программе используются несколько логических переменных, имена которых имеют форму высказываний, и из них строятся более сложные высказывания, то намного проще разрабатывать программу, если перед её разработкой записать все операции с высказываний в виде формул, применяемых в логике высказываний, чем мы в ходе этого урока и займёмся.

Источник

Оцените статью
Разные способы