Способы регулирования угловой скорости двигателя постоянного тока

Регулирование скорости двигателей постоянного тока

Из уравнения электромеханической характеристики двигателя постоянного тока независимого возбуждения следует, что возможны три способа регулирования его угловой скорости:

1) регулирование за счет изменения величины сопротивления реостата в цепи якоря,

2) регулирование за счет изменения потока возбуждения двигателя Ф,

3) регулирование за счет изменения подводимого к обмотке якоря двигателя напряжения U . Ток в цепи якоря I я и момент М, развиваемый двигателем, зависят только от величины нагрузки на его валу.

Рассмотрим первый способ регулирования скорости двигателя постоянного тока изменением сопротивления в цепи якоря . Схема включения двигателя для этого случая представлена на рис. 1 , а электромеханические и механические характеристики — на рис. 2 , а.

Рис. 1. Схема включения двигателя постоянного тока независимого возбуждения

Рис. 2. Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Изменяя сопротивление реостата в цепи якоря можно получить при номинальной нагрузке различные угловые скорости электродвигателя на искусственных характеристиках — ω1, ω2, ω3.

Проведем анализ данного способа регулирования угловой скорости двигателей постоянного тока с помощью основных технико-экономических показателей. Так как при данном способе регулирования изменяется жесткость характеристик в широких пределах, то при скоростях менее половины номинальной стабильность работы двигателя резко ухудшается. По этой причине диапазон регулирования скорости ограничен ( D = 2 — З).

Скорость при данном способе можно регулировать в сторону уменьшения от основной, о чем свидетельствуют электромеханические и механические характеристики. Высокую плавность регулирования трудно обеспечить, так как потребовалось бы значительное количество ступеней регулирования и соответственно большое число контакторов. Полное использование двигателя по току (нагреву) в этом случае достигается при регулировании с постоянным моментом нагрузки.

Недостатком рассматриваемого способа является наличие значительных потерь мощности при регулировании, которые пропорциональны относительному изменению угловой скорости. Достоинством рассмотренного способа регулирования угловой скорости являются простота и надежность схемы управления.

Учитывая большие потери в реостате при малых скоростях, данный способ регулирования скорости применяется для приводов с кратковременным и повторно-кратковременным режимами работы.

При втором способе регулирование угловой скорости двигателей постоянного тока независимого возбуждения осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока — уменьшается. Практически возможно изменение скорости только в сторону увеличения ввиду насыщения двигателя.

При увеличении скорости ослаблением потока допустимый момент двигателя постоянного тока изменяется по закону гиперболы, а мощность остается постоянной. Диапазон регулирования скорости для данного способа D = 2 — 4 .

Механические характеристики для различных значений потока двигателя приведены на рис. 2 , а и 2 , б, из которых видно, что характеристики в пределах номинального тока имеют высокую степень жесткости.

Обмотки возбуждения двигателей постоянного тока независимого возбуждения обладают значительной индуктивностью. Поэтому при ступенчатом изменении сопротивления реостата в цепи обмотки возбуждения ток, а следовательно, и поток будут изменяться по экспоненциальному закону. В связи с этим регулирование угловой скорости будет осуществляться плавно.

Читайте также:  Способ защиты почв от разрушения

Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.

Данный способ регулирования используют в приводах в качестве вспомогательного, обеспечивающего повышение скорости при холостом ходе механизма.

Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю. Поскольку все регулировочные характеристики являются жесткими, а степень их жесткости остается для всех характеристик неизменной, работа двигателя является стабильной на всех угловых скоростях и, следовательно, обеспечивается широкий диапазон регулирования скорости независимо от нагрузки. Этот диапазон равен 10 и может быть расширен за счет специальных схем управления.

При данном способе угловую скорость можно уменьшать и увеличивать относительно основной. Повышение скорости ограничено возможностями источника энергии с регулируемым напряжением и U ном двигателя.

Если источник энергии обеспечивает возможность непрерывного изменения подводимого к двигателю напряжения, то регулирование скорости двигателя будет плавным.

Данный способ регулирования является экономичным, так-так регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря. По всем перечисленным выше показателям данный способ регулирования по сравнению с первым и вторым наилучший.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

4.6. Регулирование угловой скорости двигателя постоянного тока последовательного возбуждения

Для двигателя последовательного возбужде- ния, как и для двигателя независимого возбуждения, воз- можны три способа регулирования угловой скорости, а именно; 1) регулирование посредством резисторов, вклю- ченных в цепь якоря; 2) регулирование изменением тока возбуждения; 3) регулирование изменением подводимого напряжения.

Это вытекает из уравнения электромеханической харак- теристики двигателя

Регулирование угловой скорости изменением сопротивле- ния резисторов в цепи якоря. Введением резисторов после- довательно с обмоткой якоря двигателя можно ступенчато регулировать его угловую скорость вниз от основной. Жесткость характеристик при этом уменьшается по. мере увеличения сопротивления резистора, т. е. стабильность угловой скорости невысокая, уменьшается по мере уве- личения диапазона регулирования и зависит от момента сопротивления (см. рис. 3.75). Диапазон регулирования угловой скорости не превышает (2 -:- 2,5) : 1 и зависит от нагрузки. Регулирование угловой скорости изменением сопротивления последовательно включенного резистора по условиям полного использования двигателя на всех угло- вых скоростях должно производиться при постоянном нагрузочном моменте, что соответствует работе двига- теля с неизменным током якоря, равным номинальному. Как и в предыдущем случае, не учитывается ухудшение условий вентиляции при снижении угловой скорости. Несмотря на большие потери в резисторах, этот способ находит применение в крановых и тяговых установках, поскольку он является одним из простейших для двига- телей последовательного возбуждения, применяемых в ука- занных приводах, а также потому, что работа этих уста- новок происходит с перерывами.

Читайте также:  При производстве серной кислоты контактным способом

Регулирование угловой скорости изменением тока воз- буждения. Этот способ применяется в тех случаях, когда требуется расширить пределы регулирования, за счет увеличения угловой скорости выше основной при загрузке двигателя номинальным током. В этом случае приходится осуществлять изменение тока возбуждения при помощи шунтирования обмотки возбуждения двига- теля .

Регулирование угловой скорости изменением подводимого напряжения. Регулирование может быть осуществлено с помощью отдельного генератора, тиристорного преобра- зователя либо последовательно-параллельным включением двигателей. При последовательно-параллельном включении двух двигателей можно получить две ступени угловой скорости благодаря изменению напряжения, подводимого

к каждому из двигателей 1 . Подобный способ регулирова- ния осуществляется в том случае, если один производствен- ный механизм приводится одновременно двумя двигателями половинной мощности. Применение двух двигателей вместо одного возможно по разным причинам, например: из-за необходимости сократить время пуска и торможения путем уменьшения суммарного момента инерции или по условиям большей надежности работы, если ее можно вести при пониженной мощности, т. е. с одним двигателем, или, на- конец, по условиям удобства размещения двух двигателей

Рис. 4.23. Последовательность переключений при регулировании уг- лэвой скорости двух одинаковых двигателей постоянного тока после- довательного возбуждения.

меньших габаритов вместо одного большого. Такой при- вод находит применение, например, для мощных разли- вочных кранов, в транспортных устройствах, трамваях, в доменных подъемниках, мощных ножницах для разреза- ния металла и для других механизмов. В подобных меха- низмах два двигателя одинаковой мощности работают на один общий вал (многодвигательный электропривод).

Применение последовательно-параллельного включения дает экономические выгоды. При последовательном вклю- чении на каждый из двигателей приходится половина напряжения сети. Когда двигатели переключаются на

1 Такая схема применима и для нескольких двигателей, а также для двигателей независимого или смешанного возбуждения.

параллельную работу, каждый из них оказывается включен- ным на полное напряжение. Таким образом, получаются две ступени регулирования без добавочной бесполезной траты энергии. При снижении угловой скорости вдвое роль резистора, в котором должно теряться напряжение, играет второй двигатель, полезно использующий энергию. Для получения промежуточных ступеней регулирования в цепь якоря может быть введен добавочный резистор. На рис. 4.23 приведены принципиальные схемы переклю- чений, согласно которым получается пять ступеней регу- лирования, из них две без потерь в резисторах. В целях полного использования двигателей это регулирование может производиться при постоянном нагрузочном моменте (без учета ухудшения условий вентиляции).

Кроме указанных способов, находит применение и ком- бинированный способ регулирования угловой скорости — сочетание регулирования изменением подводимого к якорю напряжения и тока возбуждения с реостатным. Этот спо- соб реализуется в схеме шунтирования обмотки якоря.

Источник

Регулирование скорости оборотов двигателя постоянного тока

С точки зрения регулирования скоростью вращения электродвигателей, интересно уравнение для электромеханических характеристик, соответствующее Второму закону Кирхгофа:

Читайте также:  Газовые смеси способы выражения состава газовой смеси

ω = U/C×Φ – ΥЯ /( C×Φ) 3 ×M

При описании технических характеристик электродвигателя скорость, выражаемая оборотами в минуту, зачастую называется частотой вращения ν по известному соотношению:

ω = 2p/T = 2pn

Поэтому эти две разноименные величины часто применяются в одном и том же смысле. Скорость w (частота ν) находится в прямой зависимости от напряжения питания U и в обратной от магнитного потока Ф. Исходя из приведенной выше формулы, возникает вывод, что скоростью можно управлять, регулируя сопротивление якоря, магнитный поток и напряжение питания.

Методы регулировки

Итак, различают три основных варианта регулирования скоростью:

  1. Изменением напряжения сети. Меняя подводимое питание можно управлять частотой вращения двигателя;
  2. Добавлением пускового реостата в цепь якоря. Регулируя сопротивление, можно уменьшить скорость вращения;
  3. Управлением магнитного потока. Двигатели с электромагнитами дают возможность регулировать поток путем изменения тока возбуждения. Однако нижний предел ν min ограничен насыщением магнитной цепи двигателя, что не позволяет увеличивать в большой степени магнитный поток.

К каждому из вариантов соответствует определённая зависимость механических характеристик.

Методы регулирования применительны к двигателям с различными:

  • типами возбуждения;
  • величиной мощности.

На практике в современных электрических моторах, в связи с недостатками и ограниченности диапазонов, рассмотренные методы не всегда применяются.

Это еще связано с тем, что машины отличаются довольно небольшими КПД, и к тому же не позволяют плавно увеличивать или уменьшать частоту вращения.

Электронные же схемы управления с регуляторами частоты, работающими от аккумуляторной батареи на 12 В, напротив, широко используются. Например, они очень актуальны для управления низковольтными электродвигателями 12 вольт в приборах автоматики, детских игрушках, электрических велосипедах, аккумуляторных детских автомобилях.

Принципиальной особенностью метода является то, что ток в цепи якоря и момент, развиваемый электродвигателем, зависят лишь от величины нагрузки на его валу. Регулировка осуществляется с помощью регулятора оборотов электродвигателя.

В течение очень долгого времени тиристорные преобразователи являлись единственным коммерчески доступными регуляторами двигателей. К слову сказать, они по-прежнему самые распространенные на сегодняшний день. Однако с появлением силовых транзисторов стали наиболее популярными регуляторы оборотов двигателя постоянного тока с широтно-импульсной модуляцией. Приведём для примера ниже схему, работающую от источника постоянного тока 12 В.

Схема на практике даёт возможность, к примеру, увеличивать либо уменьшать яркость свечения ламп накаливания на 12 вольт.

Последовательно-параллельное управление используется в ситуациях, когда два или более агрегата постоянного тока соединены механически. Схема с последовательным соединением электродвигателей, в которой общее напряжение делится на всех, используется для низкоскоростных приложений. Схема с параллельным соединением машин, имеющих одинаковое напряжение, используется в высокоскоростных применениях.

Заключение

Рассмотренный метод регулировки напряжения сети считается самым эффективным и экономичным вариантом, так как:

  • им обеспечивается широкий диапазон изменения скоростей (wmin / wmax) и лучшие энергетические характеристики (КПД);
  • он работает без каких-либо потерь мощности в силовой цепи якоря.

Управление осуществляется плавно, и по точности регулировка частоты вращения является весьма высокой.

Источник

Оцените статью
Разные способы