Способы регулирования цикловой подачи тнвд

Способы регулирования цикловой подачи

Подача топлива осуществляется только на части хода плунжера, который назы­вается активным ходом, на остальной части топливо пере­пускается в приемную полость насоса.

Величину цикловой подачи можно регулировать тремя спосо­бами: изменяя начало подачи топлива; изменяя конец подачи топлива; применяя смешанное регулирование, при котором одновре­менно изменяется начало и конец подачи топлива.

На рис. 1 показаны диаграммы топливоподачи и графики пу­ти и скорости плунжера при различных способах регулирования цикловой подачи. Диаграмма и графики ( рис. 1, а) соответ­ствуют регулированию gц за счет изменения начала подачи топлива. На всех режимах конец подачи насоса (КПН) про­исходит в точке 4.

Угол п. к. в., в течение которого происходит впрыск топлива, изменяется за счет изменения угла опережения подачи топлива  оп1 Наибольшей подаче соответствуют точки 1на диаграмме топливораспределения и на графике пути плунже­ра, угол опережения  оп1 и полезный ход плунжера hа1. При уменьшении gц начало подачи последовательно смещается в

точ­ки 2 и 3, угол опережения уменьшается до  оп2,  оп3 и полез­ный ход плунжера становится hа2 и hа3

Следовательно, регулирование величины цикловой подачи всегда приводит к изменению угла опережения подачи. Недостат­ком этого способа регулирования является малая скорость плун­жера в конце подачи, что приводит к «вялому» распыливанию в конце впрыска.

Рис. 1. Диаграммы топливоподачи

Диаграмма и графики (рис. 1, б) соответствуют регули­рованию за счет изменения конца подачи топлива. На­чалу подачи всегда соответствует точка 1, при уменьшении gц конец подачи перемещается из точки 4 в точки 3 и 2 и соответ ственно изменяется полезный ход плунжера. Угол опережения по дачи топлива  оп на всех режимах остается неизменным. Ско рость плунжера во время впрыска высокая, вся порция топлива хорошо распыливается.

Диаграмма и графики ( рис. 1, в) соответствуют регули­рованию gц за счет одновременного изменения начала и конца подачи топлива. Точки 1—6 соответствуют началу и концу пода­чи топлива при наибольшей величине gц. При уменьшении gц начало подачи последовательно смещается в точки 2 и 3, конец подачи — в точки 5 и 4. Так же, как при первом способе регу­лирования, изменение цикловой подачи приводит к изменению уг­ла опережения подачи.

Для двигателей, работающих с постоянной частотой вращения (дизель-генераторы), второй способ регулирования наиболее удо­бен, так как при неизменном скоростном режиме постоянный угол опережения подачи топлива обеспечит воспламенение топлива при одном и том же угле поворота кривошипа, что будет создавать одинаковые условия протекания процесса сгорания на всех режи­мах работы двигателя.

В двигателях средне- и высокооборотных, работающих на греб­ной винт с переменной частотой вращения, применение ТНВД с регулированием gц за счет изменения начала подачи топлива обеспечит «мягкую» работу двигателя на всех режимах из-за ав­томатического изменения угла опережения подачи топлива при изменении скоростного режима.

У малооборотных дизелей, работающих с небольшим углом опережения подачи топлива (6—8° п. к. в.), регулирование gц за счет изменения начала подачи топлива неоправданно, так как такие ТНВД на режимах среднего и малого ходов начинают по­давать топливо за ВМТ, что снижает экономичность двигателя.

Устройства, регулирующие величину цикловой подачи в насо­сах клапанного типа, могут выполняться в виде перепускных и отсечных клапанов, через которые на части хода плунжера топ­ливо перепускается в приемную полость насоса; в насосах зо­лотникового типа плунжер-золотник перепускает топливо в при­емное окно в начале или в конце своего хода.

Источник

Способы регулирования цикловой подачи

Подача топлива осуществляется при восходящем ходе плунжера, занимая лишь часть его, называемую активным ходом. На остальной части хода топливо перепускается в приемную полость насоса.

Цикловую подачу можно регулировать тремя способами: изменением или начала, или конца подачи топлива, изменением одновременно начала и конца подачи топлива (смешанное регулирование). В случае изменения начала подачи топлива на всех режимах конец подачи насоса происходит в точке 4.

Угол поворота коленчатого вала, в течение которого происходит впрыск топлива, изменяется при изменении угла опережения подачи топлива (Уг.оп. Наибольшей подаче соответствуют точки 1 на диаграмме и графике, угол опережения Уг.оп.1 и полезный (активный) ход плунжера.
При уменьшении подачи gn ее начало последовательно смещается в точки 2 и 3, угол опережения уменьшается до Уг.оп.2 Уг.оп.3 и полезный ход плунжера становится ha2, ha3.
Следовательно, регулирование цикловой подачи приводит к изменению угла ее опережения. Недостатком этого способа регулирования является малая скорость плунжера в конце подачи, что приводит к «вялому» распыливанию в конце подачи.

В случае изменения конца подачи топлива (рис. 6.3, б) началу подачи всегда соответствует точка, при уменьшении подачи gц ее конец перемещается из точки 4 в точки 3 и 2, соответственно изменяется полезный ход плунжера. Угол опережения подачи топлива на всех режимах остается неизменным.
Скорость плунжера во время впрыска высокая, вся порция топлива хорошо распыливается. При смешанном регулировании (рис. 6.3, в) точки 1-6 соответствуют началу и концу подачи топлива при наибольшей подаче gц.
При уменьшении gц начало подачи последовательно смещается в точки 2 и 3, конец подачи — в точки 5 и 4. Так же, как при первом способе регулирования, изменение цикловой подачи приводит к изменению угла опережения подачи.

Читайте также:  Самый эффективный способ борьбы с коррупцией развитие гражданского общества

Для двигателей, работающих с постоянной частотой вращения (дизель-генераторы), второй способ регулирования наиболее удобен, так как при неизменном скоростном режиме постоянный угол опережения подачи топлива обеспечивает воспламенение топлива при одном и том же угле поворота кривошипа, что создает одинаковые условия протекания процесса сгорания на всех режимах работы двигателя.
У малооборотных дизелей, работающих с небольшим углом опережения подачи топлива (6-8° п. к. в.), регулирование подачи gц путем изменения начала подачи топлива применяла фирма «Зульцер», однако и она в дальнейшем перешла к более прогрессивному решению — ТНВД со смешанным регулированием или регулированием по концу подачи.

Устройства, регулирующие цикловую подачу в насосах клапанного типа, могут быть выполнены в виде перепускных или отсечных клапанов, через которые на части хода плунжера топливо перепускается в приемную полость насоса; в насосах золотникового типа плунжер-золотник перепускает топливо в приемное окно в на¬чале или в конце своего хода.

Известно, что экономичность рабочего процесса дизеля в значительной мере зависит от максимального давления сгорания Pz. Иногда (в частности, при снижении частоты вращения и нагрузки, смене сорта топлива) давление, а с ним и экономичность двигателя падают.
В свою очередь давление Pz зависит от угла опережения подачи топлива (с его увеличением растет). В связи с этим представляется возможным при падении давления Pz поднимать его до уровня Pz ном., соответствующим образом увеличивая угол оп.
В известной мере этот путь используется в насосах с регулируемым началом подачи или смешанным регулированием. Однако гораздо большие возможности по оптимизации фаз подачи топлива достигаются при независимом устройстве регулирования угла оп. Подобные устройства, именуемые VIT (Variable Injection Timing), применяют в современных форсированных дизелях.
В малооборотных двигателях МС (МАН — Бурмейстер и Вайн) угол Уг.оп изменяется при осевом перемещении плунжерной втулки, при котором изменяется положение окон во втулке относительно плунжера (рис. 6.4, а, б). Для этого в нижней части втулки 1 имеется резьба, на которую надета поворотная чайка 2, сцепленная с зубчатой рейкой 3 (последняя перемещается от серводвигателя 6).

В среднеоборотном двигателе МАН 1.58 изменение угла опережения подачи топлива достигается смещением промежуточного ролика 2 относительно кулачка 3 с помощью рычага (рокера) с эксцентриком 1. ного насоса, изменяя длину талрепного соединения зубчатой рейки (ТНВД двигателя МАН) или поворотной втулки с общей тягой управления, которая в это время остается неподвижной.

Топливный насос двигателя МАН KSZ 70/125B в отличие от рассмотренного имеет смешанное регулирование. В торце плунжера выфрезерована винтовая кромка, управляющая началом подачи. В насосе помимо нагнетательного клапана установлен еще и обратный клапан, разгружающий форсуночную трубку от возникающего в ней в момент конца подачи по насосу скачка давления.

В ТНВД дизеля МАН — Бурмейстер и Вайн — БМЗ типа ДКРН (KGF и МС) золотникового типа регулирование по концу подачи осуществляется путем разворота плунжера, движущегося в тонкостенной втулке 6, в свою очередь размещенной в массивной подвижной втулке 8. Внутренняя втулка разгружена от деформаций, которые обычно возникают при демонтаже, поэтому обеспечивается значительно лучшее уплотнение плунжера.
Топливо подводится в камеру d, поднимается по зазору между корпусом 1 и втулкой 8, равномерно ее прогревая, и выходит через отверстие а. Надплунжерное пространство наполняется через всасывающий пластинчатый клапан 4 на протяжении всего хода плунжера вниз.
Этим насос выгодно отличается от золотниковых насосов, в которых всасывающий клапан, как правило, отсутствует. В них наполнение осуществляется лишь после того, как плунжер, пройдя значительную часть хода вниз (соответствующую активному ходу) откроет кромкой отсечное или всасывающее отверстие во втулке.
До этого момента в надплунжерной полости создается разрежение и не исключено интенсивное испарение оставшегося топлива, что отрицательно сказывается на наполнении насоса.

В начале хода плунжера вверх происходит перепуск топлива через окно с, но как только торец плунжера перекроет окна и давлением топлива закроется всасывающий клапан, оно будет нагнетаться по центральному каналу в клапане 4 в трубопровод высокого давления, откуда по форсуночным трубкам поступит к двум форсункам, установленным в каждой крышке цилиндра. После того, как спиральные регулировочные кромки плунжера откроют окна с (надплунжерное пространство сообщится с приемной полостью b насоса), происходит отсечка впрыска.

Большое внимание в конструкции уделено предотвращению протечек топлива в зону привода насоса, к распределительному валу. В нижней части втулки 6 установлено маслосъемное кольцо, ниже которого выфрезерована канавка е для отвода собирающегося топ-лива наружу. Через канавку f на поверхность втулки и плунжера подается уплотняющее масло, поступающее под давлением из системы смазки распределительного вала.

Читайте также:  Способы снижения действия мутагенных факторов

Начало подачи топлива регулируют передвижением втулки 8 по отношению к плунжеру 7 насоса, положение которого определяется кулачной шайбой. При перемещении втулки вверх увеличивается продолжительность перепуска топлива через окно с в начале восходящего хода, уменьшается угол опережения подачи.
Втулку передвигают с помощью стяжных шпилек 3, ввернутых в торец втулки и проходящих через отверстия в крышке корпуса. Положение втулки в корпусе насоса по высоте фиксируется путем перемещения гайки 5 по резьбе крышки 2.
На наружной поверхности гайки отфрезерован зубчатый венец, в зацепление с которым входит шестерня, выполненная заодно со шпинделем. На верхнем конце шпинделя имеются квадрат и риска; на крышке 2 нанесена шкала, позволяющая точно регулировать начало подачи. Одним поворотом шпинделя изменяют высоту открытия окна на 2 мм. После перемещения гайки 5 затягивают гайки шпилек 3, прижимая втулку к торцу гайки 5.

Для регулирования опережения подачи топлива на большее значение, чем позволяет смещение втулки насоса, разворачивают кулачную шайбу.

Источник

Устройство и принцип действия ТНВД механического типа

Стандартные рядные ТНВД

Рядные ТНВД относятся к классической аппарату ре впрыскивания дизельного топлива. Эти надежные агрегаты используются на дизелях с 1927 г. Рядные ТНВД устанавливаются на стационарные дизели, на двигатели грузовых автомобилей, строительных и сельскохозяйственных машин. Они позволяют получать высокие цилиндровые мощности у двигателей с числом цилиндров от 2 до 12. В сочетании с регуляторами частоты вращения коленчатого вала, устройствами для изменения угла опережения впрыскивания и различными дополнительными механизмами они обеспечивают потреби гелю возможность широкого выбора режимов эксплуатации. Рядные ТНВД для легковых автомобилей сегодня не производятся. Мощность дизеля существенно зависит от количества впрыскиваемого топлива. Рядный ТНВД всегда должен дозировать количество подаваемого топлива
в соответствии с нагрузкой. Для хорошей подготовки смеси ТНВД должен дозировать топливо максимально точно, впрыскивая его под очень высоким давлением в соответствии с процессом сгорания. Оптимальное соотношение расхода топлива, уровней шума работы и эмиссии вредных веществ в ОГ требует точности порядка 1° угла поворота коленчатого вала по моменту начала
впрыскивания. Для управления моментом начала впрыскивания и компенсации времени на проход волны давления топлива через подводящую магистраль в стандартном рядном ТНВД используется муфта 3 опережения впрыскивания см. на рис. ниже, которая с увеличением частоты вращения коленчатого вала изменяет момент начала подачи топлива в направлении «раньше». В особых случаях предусмотрено управление опережением впрыскивания в зависимости от нагрузки на двигатель. Нагрузка и частота вращения коленчатого вала регулируются изменением величины цикловой подачи топлива. Рядные ТНВД делятся на два типа: стандартные и с дополнительной втулкой.

  1. Дизель
  2. Стандартный рядный ТНВД
  3. Муфта опережения впрыскивания
  4. Топливоподкачивающий насос
  5. Регулятор частоты вращения коленчатого вала
  6. Установочный рычаг с тягой от педали газа
  7. Ограничитель полной подачи, зависимый от давления наддува
  8. Фильтр тонкой очистки топлива
  9. Магистраль высокого давления
  10. Форсунка о сборе
  11. Магистраль обратного слива топлива

Конструкция и принцип действия

Рядные ТНВД серии РЕ имеют собственный кулачковый вал 14, который установлен в алюминиевом корпусе. Он
соединяется с двигателем либо непосредственно, либо через соединительный узел и муфту опережения впрыскивания.
Количество кулачков на кулачковом валу TНВД соответствует числу цилиндров двигателя. Над каждым кулачком находится роликовый толкатель 13 с тарелкой 12 пружины 11. Тарелка передает усилие от толкателя на плунжер 8, а пружина возвращает его в исходное положение. Гильза 4 плунжера является направляющей, в которой плунжер совершает возвратно-поступательное движение. Сочетание втулки и плунжера образует насосный элемент, или плунжерную пару.

  1. Корпус нагнетательного клапана
  2. Проставка
  3. Пружина нагнета тельного клапана
  4. Гильза плунжера
  5. Конус нагнетательного клапана
  6. Впускное и распределительное отверстия
  7. Регулирующая кромка плунжера
  8. Плунжер
  9. Регулирующая втулка плунжера
  10. Поводок плунжера
  11. Пружина плунжера
  12. Тарелка пружины
  13. Роликовый толкатель

Конструкция плунжерной пары

П лунжерная пара состоит из плунжера 9 и гильзы 8. Гильза имеет один или два подводящих канала (при двух каналах один из них выполняет функции подводящего и перепускного), которые соединяют полость всасывания с камерой высокого давления плунжерной пары. Над плунжерной парой находится штуцер 5 с посадочным конусом 7 нагнетательного клапана. Двигающаяся в корпусе TНВД рейка 10 вращает зубчатый сектор 2, управляя тем самым регулирующей втулкой 3 плунжера. Перемещение самой рейки определяется регулятором частоты вращения коленчатого вала. Это позволяет точно дозировать величину цикловой подачи. Полный ход плунжера неизменен. Активный ход и связанная с ним величина цикловой подачи могут изменяться поворотом плунжера, который совершается при помощи регулирующей втулки.

  1. Полость всасывания
  2. Зубчатый сектор
  3. Регулирующая втулка плунжера
  4. Боковая крышка
  5. Штуцер нагнетательного клапана
  6. Корпус нагнета тельного клапана
  7. Конус нагнетательного клапана
  8. Гильза плунжера
  9. Плунжер
  10. Рейка ТНВД
  11. Поводок плунжера
  12. Возвратная пружина плунжера
  13. Нижняя тарелка возвратной пружины
  14. Регулировочный винт
  15. Роликовый толкатель
  16. Кулачковый вал ТНВД
Читайте также:  Как питается эвглена зеленая способ питания

Плунжер имеет наряду с продольной канавкой 2 еще и спиральную канавку 7. Получаемая таким образом косая кромка на поверхности плунжера называется регулирующей кромкой 6. Если величина давления впрыскивания не превышает 600 бар, то достаточно одной регулирующей кромки, для больших значений давления впрыскивания необходим плунжер с двумя регулирующими кромками, отфрезерованными с противоположных сторон плунжера. Их наличие снижает износ плунжерной пары, поскольку плунжер с одной регулирующей кромкой под давлением прижимается к одной стороне гильзы, увеличивая ее выработку.В гильзе плунжера размещены одно или два отверстия для подвода и обратного слива топлива.
Плунжер притерт к гильзе так плотно, что пара герметична без дополнительных уплотнений даже при очень высоких давлениях и низких частотах вращения коленчатого вала. Из-за этого замене могут подвергаться только комплектные плунжерные пары.
Величина возможной подачи топлива зависит от рабочего объема пары. Максимальное значение давления впрыскивания у форсунки может составлять, в зависимости от конструкции, 400. 1350 бар. Угловой сдвиг кулачков на кулачковом валу гарантирует точное совмещение впрыскивания с фазовым сдвигом процессов по цилиндрам двигателя в соответствии с порядком его работы.

а — гильза с одним подводящим каналом
b — гильза с двумя подводящими каналами

  1. Подводящий канал
  2. Продольная канавка
  3. Гильза плунжера
  4. Плунжер
  5. Перепускном канал
  6. Регулирующая кромка
  7. Спиральная канавка
  8. Кольцевая канавка для смазки

ПЛУНЖЕРНАЯ ПАРА С ПРИВОДОМ

а — НМТ плунжера
б — ВМТ плунжера

  1. Кулачок
  2. Ролик
  3. Роликовый толкатель
  4. Нижняя тарелка возвратной пружины
  5. Возвратная пружина плунжера
  6. Верхняя тарелка возвратной пружины
  7. Регулирующая втулка плунжера
  8. Плунжер
  9. гильза плунжера

Принцип действия плунжерной пары

(последовательность фаз)
Вращение кулачкового вала ТНВД преобразуется непосредственно в возвратно-поступательное движение роликового толкателя, приводящего в действие плунжер Движение плунжера в направлении к его ВМТ называется ходом нагнетания.
Возвратная пружина возвращает плунжер к его НМТ. Пружина рассчитана так, что даже при максимальных частотах
вращения кулачкового вала ТНВД ролик не отходит от кулачка; отскок и вместе с ним удар ролика по кулачку при длительной эксплуатации привели бы к разрушению поверхностей кулачка или ролика. Плунжерная пара работает по принципу перетока топлива с управлением регулирующей кромкой 5. Этот принцип используется в рядных ТНВД серии РЕ и индивидуальных ТНВД серии PF. В НМТ плунжера подводящий канал 2 гильзы 3 и канал 6 слива топлива открыты. Благодаря им топливо может перетекать под давлением подкачки из полости впуска в камеру 1 высокого давления. При движении вверх плунжер закрывает отверстие подводящего канала своим верхним торцом. Этот ход плунжера называется предварительным. При дальнейшем движении плунжера вверх давление
растет, что приводит к открытию нагнетательного клапана над плунжерной парой. При применении нагнетательного клапана постоянного объема плунжер дополнительно совершает втягивающий ход. После открытия нагнетательного клапана топливо во время активного хода через магистраль высокого давления направляется к форсунке, которая впрыскивает точно дозируемое количество топлива в камеру сгорания двигателя. Когда регулирующая кромка плунжера открывает перепускной канал, активный ход плунжера завершается. С этого момента топливо в форсунку не нагнетается, поскольку во время остаточного хода оно через продольную и спиральную канавки из камеры высокого давления направляется в перепускной канал. Давление в плунжерной паре при этом падает. По достижении ВМТ плунжер меняет направление своего движения на противоположное. Топливо при этом через спиральную и продольную канавки поступает обратно из перепускного канала в камеру высокого давления. Это происходит до тех пор, пока регулирующая
кромка вновь не перекроет перепускной канал. При продолжении обратного хода плунжера над ним возникает область низкого давления. С освобождением подводящего канала верхним торцом плунжера топливо вновь поступает в камеру высокого давления. Цикл начинается снова.

Последовательность работы плунжерной пары

  1. Камера высокого давления
  2. Подводящий канал
  3. Гильза плунжера
  4. Плунжер
  5. Регулирующая кромка
  6. Перепускной капал А полный ход плунжера

Регулирование цикловой подачи

Величину цикловой подачи топлива можно регулировать изменением активного хода кромки. Для этого рейка 5 через регулирующую втулку плунжера поворачивает сам плунжер 3 таким образом, что регулирующая кромка 4 может изменять момент конца нагнетания и
вместе с тем величину цикловой подачи (регулирование по концу впрыскивания). В крайнем положении, соответствующем нулевой подаче (а), продольная канавка находится непосредственно перед перепускным каналом. Вследствие этого давление в камере высокого давления плунжерной пары во время всего хода плунжера равняется давлению в полости всасывания и нагнетания топлива не происходит. В это положение плунжер приводится, если двигатель должен быть остановлен. При средней подаче (Ь) плунжер устанавливается в промежуточное положение (по регулирующей кромке). Полная подача (с) становится возможной только при установке максимального активного хода плунжера. Передача движения от рейки на плунжер может производиться либо через
зубчатую рейку на зубчатый сектор , закрепленный на регулирующей втулке плунжера либо через рейку с направляющими шлицами на штифт или сферическую головку на регулирующей втулке плунжера .

а — нулевая подача
b — средняя подача
с — полная подача

Источник

Оцените статью
Разные способы