СПОСОБЫ РАЗРУШЕНИЯ ЭМУЛЬСИЙ
Проблема деэмульгирования не менее важна, чем проблема получения эмульсий. Деэмульгирование лежит в основе многих технологических процессов, например, производства масла и сливок из молока, каучуков из латексов и т. д. На деэмульгировании основано обезвоживание сырой нефти, содержание воды в которой необходимо снизить с 10–60% до 1%, очистка сточных вод и многие другие важные процессы.
Разрушение эмульсий может быть достигнуто двумя путями: седиментацией и коалесценцией.
Седиментация наблюдается, например, при отделении сливок от молока. При этом не происходит полного разрушения .эмульсии, а образуются две эмульсии, одна из которых богаче дисперсной фазой. Так, в обычном молоке содержится 8–10% жира, а в сливках – 30–35%. Известно, что капля радиусом r и плотностью будет всплывать в более тяжелой жидкости с плотностью
0 и вязкостью
со скоростью
сед, которая определяется уравнением Стокса
сед =
.
Если >
0, то капля будет опускаться на дно под действием силы тяжести. Таким образом, осаждение капель в эмульсии – седиментация – есть следствие образования больших капель и большого различия в плотностях жидкостей. Для типичных эмульсий r
1 мкм;
0 –
0,2 г/см 3 ;
= 0,01 Па и скорость имеет порядок нескольких сантиметров в сутки. Чтобы ускорить процесс, например, для получения масла, обычно применяют центрифугирование, где центробежное ускорение более чем в 100 раз превышает ускорение свободного падения.
Коалесценция – полное разрушение эмульсии, когда выделяются в чистом виде отдельные компоненты. При разрушении эмульсии имеют место две стадии: флокуляция и собственно коалесценция.
На первой стадии капли дисперсной фазы образуют агрегаты, которые легко распадаются при слабом перемешивании. На второй стадии капли в агрегате сливаются в одну большую каплю. Этот процесс необратим в том смысле, что для разрушения больших капель на малые и воссоздания эмульсии требуется очень сильное перемешивание. Разделение фаз при коалесценции видно невооруженным глазом.
ТЕХНИКА РАЗРУШЕНИЯ ЭМУЛЬСИЙ
В промышленных масштабах эмульсии разрушают:
• осаждением под действием силы тяжести или центробежных сил;
Часто используют несколько методов одновременно.
Химические методы разрушения. Действие этих методов заключается в удалении барьеров, препятствующих коалесценции. Химические вещества – деэмульгаторы нейтрализуют действие защитного слоя, например, сероуглерод и четыреххлористый углерод растворяют защитные пленки. Прямые эмульсии, стабилизированные эмульгаторами, можно разрушить добавлением электролитов с поливалентными ионами. Такие ионы не только сжимают ДЭС, но и переводят эмульгатор в малорастворимую в воде форму.
Эмульгатор можно нейтрализовать другим эмульгатором, способствующим образованию эмульсии обратного типа. Можно добавить вещество более поверхностно–активное, чем эмульгатор, которое само не образует прочных пленок. Например, спирты (пентиловый, амиловый и т. д.) вытесняют эмульгаторы, растворяют их пленки и способствуют коалесценции.
Для каждой эмульсии выбирается «свой» деэмульгатор, который оказывает оптимальное действие.
Термические методы разрушения. Многие эмульсии можно разделить на составляющие их компоненты нагреванием до высокой температуры с последующим отстаиванием. Вероятно, нагревание ускоряет химические реакции, которые могут протекать в эмульсиях, изменяет природу поверхностного слоя, уменьшает вязкость. Таким образом, возникают условия, благоприятные для распада эмульсии.
В процессе замораживания зарождаются кристаллы льда, которые затем растут, захватывая воду. Масляные капли (если эмульсия М/В) сжимаются. Кроме того, любая растворенная соль в отдельных участках эмульсии может кристаллизоваться. При этом разрываются оболочки, которые предотвращают коалесценцию. Противостоят замораживанию только эмульсии, в которых капли окружены жесткой оболочкой, например молочные сливки, но и они являются неустойчивыми при длительном хранении в условиях низкой температуры.
ОСАЖДЕНИЕ ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИ
ИЛИ ЦЕНТРОБЕЖНЫХ СИЛ
Грубые эмульсии, например нефтяные, содержат капли больших размеров. Для разделения жидкостей эмульсии выдерживают в отстойнике. Однако при этом мелкие капли остаются во взвешенном состоянии. Обычно время отстаивания составляет около 1 часа.
Более эффективным является использование центрифуг. В них более тяжелая жидкость выталкивается к периферии и отводится, а более легкая жидкость собирается вблизи центра. Продолжительность операции составляет несколько минут.
ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ РАЗРУШЕНИЯ
Эти методы применимы в двух случаях:
• когда капли заряжены;
• когда они электронейтральны, но приобретают дипольный момент, индуцируемый в постоянном или переменном электрическом поле.
В последнем случае происходит коалесценция диполей. Разрушение эмульсий электрическими методами осуществляется в специальных аппаратах.
Источник
7.2.6. Разрушение эмульсий
Разрушение эмульсий происходит в результате нарушения строения адсорбционных слоев стабилизатора или при снижении их стабилизирующей способности. Часто разрушение эмульсии происходит в результате недостаточной кинетической устойчивости, связанной с размером капелек. В последнем случае разрушение происходит в два этапа.
На первом этапе эмульсия разделяется на две – концентрированную и разбавленную. Концентрированная эмульсия (сливки) всплывает или осаждается в зависимости от плотности дисперсной фазы, если размер капель достаточно велик, чтобы преодолеть броуновское движение.
На втором этапе крупные капли при сближении проявляют ван-дер-ваальсово притяжение, часто преодолевающее структурно-механический барьер стабилизирующего слоя. В результате этого происходит коалесценция. Таков механизм самопроизвольного разрушения эмульсий.
Преднамеренное разрушение эмульсий связано, как правило, с разрушением адсорбционных слоев стабилизатора, в результате чего исчезает препятствие, сдерживающее коагуляцию (коалесценцию).
На практике используют следующие методы:
1. Деэмульгирование. В эмульсию вводят такое вещество, которое обладает высокой поверхностной активностью и вытесняет молекулы стабилизатора с поверхности раздела фаз, но неспособное к образованию механически прочного гелеобразного слоя. В результате при столкновении капель происходит разрушение такого слоя и слияние капель. К деэмульгаторам относят вещества с неразвитым углеводородным радикалом и маленькой полярной частью — например, низшие спирты или их эфиры с окисью этилена. Этот метод часто используют для удаления воды из нефти.
2. Химическое разрушение связано с химическим изменением стабилизатора, например, при введении кислот. Образующийся продукт не способен служить стабилизатором и поэтому эмульсия становится неустойчивой.
3. Тепловое разрушение эмульсии основано на понижении адсорбционной способности стабилизатора и прочности тиксотропной структуры адсорбционного слоя при повышении температуры.
4. Электрофорез. Если капли эмульсии стабилизированы за счет образования двойного ионного слоя, то такую эмульсию можно разрушить с помощью электрического тока. Происходит электрофорез, капли разряжаются на соответствующем электроде, что приводит к их коалесценции.
5. Механическое воздействие – сепарация, центрифугирование, ультразвук – связано с механическим удалением адсорбционного стабилизирующего слоя и коалесценции лишенных защиты капель или с приданием каплям такой кинетической энергии, которая превышает потенциальный барьер коалесценции.
6. Разрушение эмульсий с помощью фильтров, хорошо смачивающихся дисперсионной средой, но не смачивающихся внутренней – дисперсной фазой, остающейся на фильтре.
7. Инверсия фаз. Введение веществ, изменяющих растворимость стабилизатора, способствует переходу его молекул с поверхности раздела в объем фаз. Например, добавлением солей щелочноземельных металлов к эмульсиям прямого типа, стабилизированным солями жирных кислот щелочных металлов, можно изменить устойчивость эмульсии. При этом увеличивается растворимость стабилизатора в углеводородной жидкости и происходит разрушение эмульсии. Однако если добавить значительное количество ионов щелочноземельных металлов, то может произойти переход от эмульсии прямого типа к эмульсии типа «вода в масле». Это явление, так же, как и в случае изменения типа эмульсии при повышении температуры, если эмульсия стабилизирована неионогенным стабилизатором, носит название инверсии фаз и может наблюдаться по электропроводимости или по вязкости.
Источник
Методы разрушения эмульсий.
Способы разрушения эмульсий, условно делятся на следующие группы: химические, механические, термические и электрические.
Термические методы – деэмульгирования нефти ускоряется при ее подогреве. С повышением температуры возрастают Ван – Дер. Ваальсовые силы, усиливается броуновское движение, вероятно, увеличивается скорость химической адсорбции и уменьшается вязкость эмульсии. Следовательно, уменьшается прочность бронирующего слоя и ускоряет процесс деэмульгирования. Если парафины являются основными стабилизаторами эмульсий, то нагревание нефти до температуры, превышающей температуру плавления парафинов (50-65 0 С) приводит к полному разрушению эмульсии. Высокие издержки, потери легких фракций нефти в результате их испарения являются очень серьезными недостатками термического способа деэмульгирования нефти. Испарение легких нефтяных фракций приводит к тому, что растворимость асфальтенов снижается и повышается вероятность отложения твердых осадков на внутри корпусных устройствах нефтеперерабатывающих установок и стенках печных труб, а также повышается риск их коррозии.
Физические методы – к данной группе методов относятся отстаивание воды в гравитационных сепараторах (отстойниках), фильтрация эмульсии через слой волокнистого или гранулированного фильтрующего материала, центрифугирование, замораживание, пневматическая флотация и многое другое.
Фильтрация – нестойкие эмульсии успешно расслаиваются при пропускании их через фильтрующий слой, который может быть из гравия, битого стекла, древесины, металлических стружек, стекловаты и других материалов. Здесь деэмульсация нефтей основана на явлении селективного смачивания. Смачивание жидкостью поверхности твердого тела можно рассматривать как результат действия сил поверхностного натяжения, т.е. жидкость тем лучше смачивает твердое тело, чем меньше взаимодействие между ее молекулами.
Фильтрующее твердое вещество должно удовлетворять основным требованиям:
— иметь хорошую смачиваемость водой, чтобы произошло сцепление глобул воды с фильтрующим веществом, разрыв межфазных пленок, и произошла коалесценции (слияние) капель воды;
— быть достаточно прочным, чтобы обеспечить длительную эксплуатацию.
Данный метод не находит широкого применения из – за громоздкого оборудования, малой производительности, необходимости часто менять фильтры.
Электрические методы – между дисперсионной средой и поверхностью диспергированных в ней частиц существует разность потенциалов. При воздействии на эмульсию электрического поля диспергированные капли воды поляризуются и стремятся расположиться вдоль силовых линий поля, при этом капли вытягиваются, а противоположные заряды в капле смещаются к ее краям, возникают силы взаимного притяжения, в результате чего частицы дисперсной фазы соударяются друг с другом и сливаются в более крупные. Обработка эмульсии в электрическом поле не способствует полному ее расслоению, поэтому данный способ, как правило, применяют в сочетании с термохимическими методами разрушения эмульсий.
Химические методы – нашли наиболее широкое применение в промышленности. Химическое деэмульгирование – самый дешевый, быстрый и простой в осуществлении – способ разрушения эмульсий. Его сущность заключается в устранении энергетического барьера (в виде стабилизирующего действия эмульгаторов в бронирующей оболочке), препятствующего расслоению эмульсий. Как правило, для обработки определенного сорта нефти применяют смесь реагентов, каждый из которых выполняет определенную функцию.
Дата добавления: 2015-04-03 ; просмотров: 3741 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник