Способы разрушения грунтов при его разработке

Способы разработки грунтов

В дорожном строительстве основными работами являются земляные, составляющие по стоимости до 70% от всех видов работ.

Земляные работы связаны с разрушением грунтов, от способов которого зависят производительность машин и стоимость дорожных работ.

Различают пять основных способов разрушения грунтов:

— механический, при котором грунт отделяется от массива ножовым и ковшовым рабочим органом машины — резанием, отколом, отрывом, обрушением под действием статических, динамических, вибрационных и виброударных нагрузок;

— гидравлический, при котором используется давление струй воды, размывающей подошву забоя и вызывающей обрушение грунта;

— при работе под водой применяется всасывание грунта землесосной установкой;

— взрывной, при котором разрушение грунта происходит в результате давления газов, выделяемых при сгорании взрывчатых веществ;

— физический, при котором разрушение грунта или уменьшение его прочности происходит вследствие действия ультразвука, тока высокой частоты, теплового воздействия;

— химический, при котором для отделения грунта от массива его переводят в жидкообразное или газообразное состояние.

Применяются и комбинированные способы разрушения грунтов, например механический с гидравлическим, механический с взрывным.

Правильный выбор способов разработки грунтов с возможным их комбинированием является одним из основных факторов повышения производительности используемых при этом машин.

Наиболее распространенным является механический способ, с помощью которого разрабатывается не менее 90% всего объема земляных работ. При этом способе разрушение грунта производится рабочим органом, режущая часть которого представляет клин с соответствующими параметрами.

При работе с малым углом резания у и относительно небольшим заглублением режущего органа в грунтах средней влажности и связности срезанные куски грунта имеют форму трапеции, а основание борозды — ровную поверхность. При работе в сухих связных грунтах срезанный пласт грунта разламывается на куски неправильной формы, а основание борозды имеет неровную изрытую поверхность. Во влажных вязких грунтах срезанный пласт грунта получается сплошным слоем, а основание борозды имеет неровную изрытую поверхность.

Во влажных вязких грунтах срезанный пласт грунта получается сплошным слоем, а основание борозды имеет гладкую поверхность. Малосвязные грунты при резании распадаются на отдельные частицы, которые скапливаются впереди рабочего органа.

НОВОСТИ КОМПАНИИ

Башенные краны серии КБ
Краны серии КБ конструируются по единой схеме и комплектуются из узлов кранов КБ

Стреловые самоходные краны
Стреловыми самоходными кранами называются грузоподъемные машины

Автомобильные стреловые краны
Автомобильными называются стреловые краны, смонтированные на базе грузовых

Источник

Способы разрушения грунтов при его разработке

Грунты представляют собой горные породы, слагающие поверхностные слои земной коры; они образовались в результате выветривания и разрушения основной материковой породы. Большая часть грунтов —минерального происхождения, но имеются грунты частично или полностью органического образования.

В условиях естественного залегания грунты состоят из твердых частиц различной крупности, образующих грунтовый скелет воздуха и воды. Последняя в зависимости от температуры грунта может быть в различных фазах своего состояния (твердом, жидком, газообразном).

По характеру связи между твердыми частицами грунты подразделяются на сыпучие, связные и скальные.

Рекламные предложения на основе ваших интересов:

Сыпучие, несвязные грунты характеризуются отсутствием сцепления между частицами, значительной водопроницаемостью, малой сжимаемостью, высокой величиной сил внутреннего трения и быстротой деформаций под нагрузкой.

Связные грунты отличаются малой водопроницаемостью; присутствие в них воды обусловливает молекулярные силы сцепления. Поэтому связные грунты характеризуются значительным оцеплением между частицами, большими деформациями под нагрузкой и длительностью деформаций.

В скальных грунтах их частицы жестко связаны между собой цементирующим веществом, и эта связь при ее нарушении не восстанавливается.
Более полная классификация и характеристика грунтов приведены в справочниках и специальной литературе.

Свойства грунтов оказывают существенное влияние на характер их разработки и производительность машин. В связи с этим при выборе типа машины для земляных работ надо учитывать характерные свойства и состояние разрабатываемых грунтов. Наиболее важные с этой точки зрения свойства грунтов — сопротивление разработке и устойчивость их как основания, на котором установлена машина, определяются в основном гранулометрическим составом и физико-механическими свойствами грунта.

Гранулометрический состав грунта характеризуется процентным содержанием по весу частиц различной величины. Крупность отдельных частиц нескальных грунтов составляет: гальки 40 мм; гравия 2—40 мм; песка 0,25—5 мм; песчаной пыли 0,05— 0,25 мм; пылеватых частиц 0,005—0,05 мм и глинистых частиц 0,005 мм.

Читайте также:  Способы борьбы с вредителями комнатных растений

Для оценки наиболее важных физико-механических свойств грунта имеют значение объемная масса, разрыхляемоеть, влажность, угол естественного откоса, связность (сцепление), трещиноватость, слоистость.

Объемная масса — отношение массы грунта в состоянии естественной влажности к его объему. Различают объемную массу в плотном теле и в разрыхленном грунте. Объемная масса грунтов, разрабатываемых землеройными машинами, колеблется в пределах 1,5—2,0 г/ж3 в зависимости от их минералогического состава, пористости и влажности.

С течением времени или под воздействием грунтоуплотняющих машин разрыхленные грунты уплотняются. Средние значения коэффициента первоначального разрыхления колеблются в пределах 1,08—1,32, а коэффициента остаточного разрыхления— в пределах 1,01—1,09. При разработке мерзлых грунтов коэффициент разрыхления возрастает примерно в 1,5—2,5 раза.

Свойства грунтов в сильной степени меняются в зависимости от содержания в них воды. Грунты принято считать сухими с влажностью менее 5%, влажными—с влажностью 5—30% и насыщенными или мокрыми при влажности более 30%.

Связность или взаимное сцепление частиц грунта характеризует способность грунта противостоять воздействию внешних сил, которые стремятся разъединить его частицы. От величины сил сцепления зависит сопротивление грунта резанию или размыву.

Грунты разрабатывают различными методами с большей или меньшей производительностью труда и машин. Поэтому каждый грунт может входить в группу легко разрабатываемых грунтов одним методом и в группу трудно разрабатываемых грунтов другим методом.

Грунты, разрабатываемые строительными машинами, обычно относят к следующим шести группам:
I группа — растительный грунт, торф, пески и супеси;
II группа — лессовидный суглинок, рыхлый влажный лесс, гравий до 15 мм;
III группа — жирная глина, тяжелый суглинок, крупный гравий, лесс естественной влажности;
IV группа — ломовая глина, суглинок со щебнем, отвердевший лесс, мягкий мергель, опоки, трепел;
V и VI группа — скалы и руда, а также мерзлые глинистые и суглинистые грунты.

В комплексе земляных работ ведущим процессом является разработка грунта. Поэтому способ разработки грунта определяет тип ведущей машины и все остальное оборудование для механизации данного технологического процесса.

Различают три основных способа разработки грунта и горных пород: механический, гидравлический и взрывной.

При механическом способе отделение части грунта или горной породы от основного массива осуществляется ножевым или ковшовым рабочим органом землеройной машины.

При гидравлическом способе разработка грунта в карьерах или полезных выемках производится: в сухих забоях —мощной компактной водяной струей, а в забоях под водой — путем засасывания грунта из-под воды заборной трубой при помощи мощного центробежного насоса — землесоса; плотные грунты разрыхляются при этом механической фрезой — рыхлителем.

При взрывном способе разрушение грунта или горной породы и перемещение их в нужном направлении осуществляется давлением газов, выделяемых при взрыве и сгорании взрывчатых веществ.

Могут иметь место и комбинированные способы разработки грунта, например, гидромеханический, при котором гидравлический способ комбинируется с механическим, и т. п.

В стадии исследования и экспериментов находятся физический и химический способы разрушения грунта и горных пород. При физическом способе полное разрушение или уменьшение прочности грунта и горных пород осуществляется с помощью ультразвука, электрогидродинамического эффекта, тока высокой частоты, прожиганием реактивными горелками и охлаждением.

Рис. 70. Образование и поперечное сечение стружки в грунтах:
а — образование стружки; б — поперечное сечение стружки; 1 — стружки в пластичных грунтах; 2 — стружки в малосвязных, связных и сухих грунтах; 3 — стружка в твердых грунтах; 4 — блокированное резание; 5 — полусвободное резание; 6 — свободное резание

При химическом способе для отделения грунта и горных пород от массива их переводят в жидкое или газообразное состояние.

Механический способ разработки грунтов землеройными машинами получил наибольшее распространение, так как он применим почти для всех грунтов, кроме скальных .пород, которые предварительно должны быть .подорваны. При помощи разнообразных землеройных машин выполняется не-менее 80—85% всего объема земляных работ.

Землеройные машины производят разрушение грунта в основном последовательным отделением части грунта (стружки) от массива. Перемещение срезанной стружки по рабочему органу машины и накапливание в нем грунта вызывают значительные сопротивления. Характер разрушения грунта и величина .возникающих при этом сопротивлений зависят от многих факторов — механических свойств грунта и его физического состояния, формы и расположения режущего органа и т. п.

Читайте также:  Способы уменьшения токов фуко

Проф. Н. Г. Домбровским проведен большой комплекс исследований на одноковшовых экскаваторах и создана теория разрушения первоначальной структуры грунта. В соответствии с этой теорией в начале процесса копания режущий клин, воздействуя на грунт, производит уплотнение грунта. Затем, когда силы давления передней грани клина уравновесят максимальное сопротивление сдвигу (у пород пластичных и слабых) или сколу (у пород твердых), в плоскости скольжения произойдет сдвиг или отрыв части стружки и начнется новое уплотнение (рис. 70, а).

Рис. 71. Призма волочения при различных траекториях ковша:
а — горизонтальная; б — наклонная; в — почти вертикальная

Чем толще стружка и меньше угол копания б, тем больше область деформации грунта. Однако сопротивление деформации грунта
меньше, и сдвиг наступает быстрее при срезании тонкой стружки и большом угле копания.

В общем случае поперечное сечение стружки имеет вид, показанный на рис. 70, б.

Наиболее характерным и имеющим практическое значение является полусвободное резание, поскольку блокированное резание и свободное характерны только для начала и конца процесса разработки слоя или забоя. При этом, фактическое поперечное сечение разрушенной ковшом стружки больше, чем площадь (рис. 70, б) как за счет зубьев, так и за счет сколов грунта снаружи боковых стенок.

Помимо чистого резания, при копании грунта происходит также перемещение срезанной части грунта по ковшу; часть его поступает в ковш, а часть образует перед режущей кромкой ковша призму волочения (рис. 71), величина которой зависит от рода состояния грунта, траектории и формы рабочего органа и угла копания.

В общем случае при копании грунта возникают три рода сопротивлений: сопротивление трению ковша о грунт Рт, сопротивление резанию грунта Рр и сопротивление перемещению призмы волочения и грунта в ковше Рп.

При работе в неоднородных грунтах, при тупой режущей кромке и неудачной ее конструкции значения Рю могут значительно возрасти.

Перспективными являются машины, осуществляющие процесс копания при движении рабочего органа сверху вниз и работающие по методу скола с обрушением. Энергоемкость процесса копания машин, работающих по этому принципу, по данным проф. Н. Г. Домбровского, в среднем на 40—50% меньше, чем у обычных, и в зависимости от рода грунта составит от 0,02 до 0,2 квт-ч на 1 м3. По такому принципу работают, например^ землеройно-фрезерные машины.
Энергоемкость процесса разработки грунта (на 1 м3) в зависимости от группы грунта, размеров и конструкции рабочего органа примерно составляет: а) при механическом способе разработки —от 1 до 3 квт-ч, достигая в отдельных случаях 6 квт-ч; б) при гидравлическом способе — от 10 до 12 квт-ч.

Источник

Способы разработки грунтов

Наиболее энергоемкой из всех операций по устройству вы­емок является отделение грунта от массива (разрушение грун­та), в связи с чем способы разработки грунтов различаются по способам их разрушения, характеризуемым видом энергетичес­кого воздействия.

Механическое разрушениегрунтов нашло наибольшее приме­нение в строительстве. Оно основано на сосредоточенном кон­тактном силовом воздействии рабочего органа машины на грунт, называемым также резанием.Для реализации этого способа рабо­чие органы грунторазрабатывающих машин оснащают клинооб­разными режущими инструментами, перемещаемыми относитель­но грунтового массива. В зависимости от скорости и характера воздействия режущего инструмента различают статическое и динамическоеразрушение грунтов. При статическом разрушении ре­жущий инструмент движется равномерно или с незначительны­ми ускорениями при скорости до 2. 2,5 м/с. Этот способ приме­няется как основной при разработке грунтов экскаваторами, землеройно-транспортными машинами, рыхлителями и буровыми машинами вращательного действия.

В машинах, разрабатыва­ющих прочные скальные породы, реализуется как статический, так и динамический способы их разрушения, в частности, удар­ный. Известны также вибрационный и виброударный способы, которые пока еще не получили широкого промышленного при­менения. Энергоемкость механического разрушения песчаных и глинистых грунтов в зависимости от их крепости и конструкции режущих инструментов составляет 0,05. 0,5 (кВт-ч)/м 3 . Этим спо­собом выполняют до 85 % всего объема земляных работ в строи­тельстве.

Рабочий процессмашины для механической разработки грунта может состоять только из операции разрушения грунта, как, например, у рыхлителя при разрушении прочных грунтов, или вклю­чать эту операцию как составную часть рабочего процесса. В по­следнем случае одновременно с отделением от массива грунт захватывается ковшовым рабочим органом или накапливается пе­ред ним — при отвальном рабочем органе, например, при раз­работке бульдозером, автогрейдером.

Читайте также:  Народный способ лечение радикулита

Перемещение грунта ков­шовым или отвальным рабочим органом также является состав­ной частью рабочего цикла машины, а отсыпка грунта, выпол­няемая в конце этой операции, заключается в целенаправлен­ной его выгрузке из рабочего органа. Для увеличения дальности перемещения грунта некоторые машины оборудуют специаль­ными транспортирующими устройствами, как например, экска­ваторы непрерывного действия.

С той же целью такие машины как скреперы после отделения грунта от массива и заполнения им ковша перевозят грунт к месту отсыпки на значительные рас­стояния собственным ходом. При экскаваторной разработке для перевозки грунта используют специальные транспортные машины — землевозы, а также автосамосвалы, железнодорожные плат­формы или баржи.

Для интенсификации разрушения грунта используют комбини­рованные способы.Например, газомеханический способобеспечива­ет импульсную подачу газов под давлением в отверстия на земле­ройном рабочем органе. Выходящие через отверстия газы разрыхляют грунт, уменьшая этим сопротивление перемещению рабо­чего органа.

Сопротивляемость разрушению мерзлых водонасыщенных грун­тов может быть понижена путем ввода в них химических реаген­тов с пониженной температурой замерзания (хлористого натрия, хлористого калия и др.).

При устройстве гидротехнических земляных сооружений (пло­тин, дамб), а также в некоторых других случаях на водоемах или вблизи них широко применяют гидравлическое разрушение грун­товструей воды с использованием гидромониторов и землесосных снарядов. Таким же способом добывают песок, гравий или песчано-гравийную смесь для их последующего использования. Энергоем­кость процесса достигает 4 (кВт ч)/м 3 , а расход воды до 50 60 м 3 на 1 м 3 разработанного грунта. Тем же способом разрабатывают грунты на дне водоемов. Малосвязные грунты при этом разраба­тывают всасыванием без предварительного рыхления, а прочные грунты предварительно разрыхляют фрезами.

Способ разработки грунтов с использованием напора струи воды и землесосных снарядов, которым разрабатывают около 12 % общего объема грунтов в строительстве, называют гидромехани­ческим.

Взрывомобычно разрушают крепкие скальные породы и мерз­лые грунты под давлением газов, образующихся при воспламенении взрывчатых веществ, которые закладывают в специально пробурённые скважины (шпуры), в прорезные узкие щели или траншеи.

Для бурения шпуров применяют машины механического бурения, а также термо- и термопневмобуры.Щели и траншеи обычно разрабатывают механическим способом. В термобуре реализуется термомеханический способ разрушения грунтапутемего прогрева (до 1800. 2000°С) газовой струей и с последующим разрушением термоослабленного слоя грунта с помощью режущего инструмента. При термопневматическом бурении грунт разрушается и выносится из скважины высокотемпературной газовой струей со скоростью до 1400 м/с. Разработка грунтов взрывом наиболее энергоемкая, а, следовательно, наиболее дорогая из всех рассмотренных выше способов.

Для дробления валунов и негабаритных камней, образующихся в результате разрушения грунтов взрывом, применяют установки, реализующие электрогидравлический способразрушения грунтов, использующий ударную волну, которая образуется в искровом разряде в жидкости. При этом полученная в разрядном канале теплота нагревает и испаряет близлежащие слои жидкости, образуя парогазовую полость с высоким давлением, воздействующим на грунт.

Реже применяют физические способыразрушения грунтов без комбинирования с другими способами. Они основаны на воздействии на грунт температурных изменений (прожигание прочных грунтов, оттаивание мерзлых грунтов), токов высокой частоты, ультразвука, электромагнитной энергии, инфракрасного излучения и т. д.

Выбор способа разработки зависит, прежде всего, от прочности грунта, в том числе и от температурных условий, связанных с его промерзанием. При правильной организации плановых (не аварийных) работ можно избежать или свести к минимуму энергетические и другие затраты, связанные с разработкой мерзлых грунтов, выполняя земляные работы преимущественно до наступления зимы. В строительной практике используют также способы предохранения подлежащих разработке в зимнее время грунтов от промерзания путем их укрытия специальными матами или подсобными материалами (опилками, выпавшим до промерзания грунта снегом, разрыхленным слоем грунта и т.п.). Так, в трубопроводном строительстве во избежание обрушения траншеи выкапывают перед укладкой в них труб; подлежащие зимней разработке участки выкапывают до наступления морозов на неполную глубину и тут же их засыпают. Разрыхленный грунт предохраняет нижележащие слои от промерзания и позволяет повторно разрабатывать траншеи требуемой глубины при низких температурах окружающего воздуха.

Источник

Оцените статью
Разные способы