Способы разрушения эмульсии нефти

Методы разрушения водонефтяных эмульсий.

Эмульсии представляют собой дисперсные системы из двух жид­костей, не растворимых или малорастворимых друг в друге, одна из которых диспергирована в другой в виде мелких капелек (глобул). Нефтяные эмульсии бывают двух типов: «нефть в воде» (гид­рофильная) и «вода в нефти» (гидрофобная).

1) Механический способ разрушения эмульсий основан на приме­нении отстаивания, центрифугирования и фильтрования. Процесс отстаивания в большинстве случаев является первой стадией раз­рушения эмульсий. Центрифугирование и фильтрование применя­ют в лабораторных условиях для определения содержания воды в нефти. В промышленности центрифугиро­вание из-за малой производительности центрифуг и большого рас­хода электроэнергии не нашло применения. Практически не при­меняют и фильтрование, так как оно требует частой смены фильт­ров, что связано с большими трудовыми затратами.

2) Термический способ разрушения нефтяных эмульсий основан на применении тепла. При нагревании эмульсии пленка эмульгатора расширяется и разрушается, а капельки жидкости сливаются друг с другом. Внизу отстаивается вода, наверху — нефть. Обычно от­стаивают и нагревают нефть в резервуарах-отстойниках при тем­пературе до 70°С. Но встречаются эмульсии, которые не разруша­ются даже при 120°С. В этом случае прибегают к другим методам разрушения эмульсии или проводят процесс при более высоких температурах и с большей герметизацией во избежание потерь лег­ких фракций.

3) Химический способ разрушения эмульсий применяют сейчас все чаще. Используемые для этого вещества — деэмульгаторы вытес­няют действующий эмульгатор, либо растворяют его, благодаря чему эмульсия разрушается. В последнее время наиболее широко применяют деэмульгаторы типа неионогенных поверхностно-ак­тивных веществ (на основе окисей этилена и пропилена), которые способствуют образованию эмульсий, противоположных по типу разрушаемым. При соприкосновении таких эмульсий их эмульгирующая способность парализуется, и эмульсия расслаивается.

4) Термохимический способ заключается во введении в подогре­тую нефть деэмульгатора. Он эффективен при использовании вы­сококачественных деэмульгаторов. Более совершенный термохими­ческий способ — обезвоживание нефти в герметизированной аппа­ратуре, где в присутствии деэмульгатора под давлением до 0,9 МПа (9 кгс/см 2 ) нефть, предварительно нагретая в теплообменниках или печах до 150—155°С, отстаивается от воды. Этот способ применя­ют при разрушении стойких эмульсий тяжелых нефтей.

5) Электрический способ нашел применение на промыслах и осо­бенно на нефтеперерабатывающих заводах. Сущность его заклю­чается в том, что под действием на эмульсию электрического поля, созданного высоким напряжением переменного тока, пленка раз­рывается и эмульсия разрушается.

ЦЕНТРАЛЬНЫЙ ПУНКТ ПОДГОТОВКИ НЕФТИ. ТЕХНОЛОГИЧЕСКАЯ СХЕМА ЦППН

Обводненная нефть с содержанием воды до 10% по трубопроводам при давлении до 6 кгс/см2 поступает в ЦППН и делится на два потока. По первому потоку (нефть попадает в нагреватели нефти первой ступени нагрева. В приемный коллектор нагревателей подается реагент-деэмульгатор. Нагретая нефть направляется в параллельно работающие отстойники, где осуществляется предварительный сброс до содержания воды не более 5%. Дальше частично обезвоженная нефть подается на вторую ступень нагрева. Перед нагревателями второй ступени также подается реагент-деэмульгатор. Далее нагретая нефть направляется в сепараторы горячей ступени, в которых отделяется газ. Газ направляется на концевые сепараторы. Сепарированная и горячая нефть из сепараторов горячей ступени поступает в электродегидраторы, где происходит окончательное обезвоживание нефти под воздействием электрического поля. Подтоварная вода из электродегидраторов направляется в очистные резервуары – для очистки воды от наличия остаточных нефтепродуктов методом отстоя. Очищенная подтоварная вода отбирается с низа резервуара по коллектору и насосами откачивается в систему ППД. Нефтяная пленка отбирается через переточный стояк и насосами подается во входной трубопровод на ЦППН для повторной подготовки. Подготовленная в электродегидраторах нефть разгазируется в концевых сепараторах. Нефть с концевых сепараторов поступает в технологические резервуары, затем через переточный стояк перетекает в товарные резервуары. Оттуда обессоленная, обезвоженная, стабилизированная нефть по коллектору внешней перекачки поступает на прием насосной внешней откачки и через узел учета нефти перекачивается на ФКСУ по нефтепроводу внешнего транспорта. Выделяющийся газ идет на компрессорную станцию низких ступеней и подается для дальнейшего транспорта в систему сбора газа УВСИНГ. В качестве топлива в нагревателях.

Дата добавления: 2019-02-22 ; просмотров: 764 ; Мы поможем в написании вашей работы!

Источник

Методы разрушения нефтяных эмульсий

Для разрушения эмульсии используют следующие методы : механический способ, малоэффективен (гравитационный отстой), несколько лучше использование центробежной силы, т.е. центрифугирование нефти- за счет разности плотностей нефти и воды, чем больше эта разность и размеры водяных капель и чем меньше вязкость среды, тем лучше расслоение. При отстое одновременно удаляется основная масса механических примесей-песка, глины.

Термохимический метод – это метод разрушения путем нагрева нефти и ввода деэмульгатора (хим.вещество), разрушающего сольватную оболочку.

Повышение температуры повышает скорость диффузии эмульгатора в нефти, снижает прочность и толщину сольватной оболочки, снижает вязкость нефти и увеличивает разность плотностей нефти и глобул. Снижение вязкости может достигать до 1% от ее первоначального значения. Все это способствует возрастанию скорости оседания частиц воды.

Деэмульгаторы – это ПАВ, которые воздействуют на сольватную оболочку за счет:

— абсорбционного вытеснения эмульгатором сольватной оболочки;

— химического взаимодействия с компонентами эмульгатора и разрушения сольватного слоя.

При выборе деэмульгатора следует учитывать тип нефти (смолистая, парафинистая), содержание в ней воды, интенсивность перемешивания, температуру, стоимость реагента. В подогретую нефть вводят от 0,5-2% ДЭ в зависимости от группы нефти.

Группа нефти Плотность нефти, кг/м 3 Уд.расход,г/т
легкая 760-840 Не более 5
средняя 840-880 Не более 10
тяжелая 880-920 Не более 30
высокосмолистая 0,86-1,05 Не более 50

Требования к деэмульгаторам — деэмульгаторы должны:

-хорошо растворяться в одной из фаз эмульсии (нефти или воде);

-иметь достаточную поверхностную активность, чтобы вытеснить молекулу эмульгатора;

-образовывать на границе раздела нефти и воды адсорбированные слои с низкими структурно-механическими свойствами;

— не коагулировать в пластовых водах;

— инертны по отношению к металлу;

— при малых расходах обеспечить максимальное снижение межфазового натяжения на границе нефть-вода;

— не ухудшать качества нефти после ее обработки;

— легко извлекаться из сточных вод;

Различают ДЭ – ионогенные и неионогенные, т.е. диссоциирующие и не диссоциирующие на ионы в водных растворах.

Неионогенные имеют преимущества: меньший расход, реагируют с компонентами пластовой воды и нефти и не дают осадков, в разы дешевле (4-6 раз), не вызывают инверсии эмульсии (при избытке ДЭ, когда дисперсная фаза становится дисперсионной средой, т.е. В/НßàН/В).

1. органические вещества – спирты, бензол, керосин, бензиновая фр. – их применяют при экспериментальных исследования, т.к. это дорогостоящие вещества, их трудно отделить от нефти после удаления воды и необходим большой их расход.

2. ПАВ коллоидного типа – наиболее распространены в промышленности: анионоактивные – в воде диссоциируют на Ме + n или Н + и R — (угл.радикал),катионоактивные – в воде дают R + и Аn — .

Электрическое деэмульгирование. Использование электрического поля для целей обезвоживания нефти впервые было осуществлено в 1909г. Механизм в том, что между электродами возникает однородное Эл. поле, силовые линии параллельны. При замене чистой нефти эмульсией В/Н однородность Эл. поля нарушается, капельки воды располагаются вдоль силовых линий. В результате индукции Эл. поля диспергированные капли воды поляризуются и вытягиваются вдоль силовых линий с образованием на концах зарядов: (+) — по направлению поля, (-) — в противоположном направлении. При сближении капель сила притяжения возрастает и адсорбированные сольватные оболочки сдавливаются и разрушаются.

Читайте также:  Способы похудения за 3 дня

Эффективность в поле постоянного тока меньше, чем переменного за счет циклического изменения направления движения тока и напряженности поля, капли находятся постоянно в состоянии колебания. Принцип действия переменного электрического поля на нефтяную эмульсию следующий: при попадании частицы эмульсии в электрическое поле капли воды, заряженные отрицательно, перемещаются внутри элементарной капли, придавая ей грушевидную форму, острый конец которой обращен к положительно заряженному электроду. С переменой полярности электродов, капля острым концом вытягивается в противоположную сторону. При частоте переменного тока 50 гц, капля будет менять свою конфигурацию 50 раз/с. При движении капли будут сталкиваться, ДЭ, разрушая диэлектрическую оболочку, способствует тому, что при достаточно высоком потенциале заряда происходит пробой диэлектрической оболочки, капли сливаются в крупные и осаждаются в электродегидраторе. Обычно напряжение между электродами 27,3 или 33 кв.

На эффективность электрического деэмульгирования влияет содержание воды в нефти: чем больше, тем лучше. Однако. увеличение воды грозит нарушением режима работы электродегидратора (замыкание тока на корпус или между электродами). Поэтому содержание воды не более 2-3%.

Электротермохимический метод – сочетание термохимического с осаждением частиц воды в сильном электрическом поле и с интенсивной водной промывкой нефти. В электротермохимическом методе разрушения эмульсии нефти действуют все факторы, повышающие скорость осаждения капель эмульсии- снижены r, n за счет повышения температуры, разрушены или ослаблены сольватные оболочки за сче ввода ДЭ, создана принудительная вибрация капель, способствующая их интенсивной коалесценции (т.е. росту dк. Это позволяет достичь глубокой очистки нефти от воды (до 0,1%) и минеральных солей (до 3-5 г/т).

Рисунок 2.1 – Схема электротермохимического обезвоживания и обессоливания

Н-1 – насос; П-1 – печь; СМ – смеситель

h1 – зона барботажа через слой воды, где отделяются крупные капли воды;

h2 – зона подэлектродного пространства, где в слабом электрическом поле начинается коалесценция средних капель воды;

h3 – зона сильного электрического поля (напряженность 3-4 кВ/см) коалесцирует самые мелкие капли

— распределитель, который находится под уровнем воды. Нефть, поднимаясь от него струями вверх, проходит три зоны.

Источник

Реферат: Способы разрушения водонефтяной эмульсии

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

УХТИНСКИЙ ГОСУДАРСТВЕНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра РЭНГМ и ПГ

Реферат на тему: «Способы разрушения водонефтяной эмульсии»

Дисциплина: «Сбор и подготовка скважинной продукции»

Выполнил ст.гр. РЭНГМ 2 -06: Попов М. А..

Проверил: Воронина Н. В.

Обводнение продуктивных пластов нефтяных месторождений вызывает серьезные осложнения при добыче, сборе и подготовке нефти, связанные с образованием водонефтяных эмульсий [1].

Образование стойких эмульсий снижает показатели безотказности работы насосных установок из-за увеличения количества обрывов штанг ШГНУ, пробоев электрической части УЭЦН вследствие перегрузок погружного электродвигателя. Рост давления жидкости в системах сбора нефти и газа влечет за собой порывы коллекторов. Затрудняются сепарация газа и предварительный сброс воды. Однако наибольший рост энерго- и металлоемкости, связанный с необходимостью разрушения стойких эмульсий, имеет место в системах подготовки нефти. Эмульсия — это гетерогенная система, состоящая из двух несмешивающихся или мало смешивающихся жидкостей, одна из которых диспергированна в другой в виде мелких капелек (глобул) диаметром, превышающим 0.1 мкм. При образовании эмульсий образуется огромная поверхность дисперсной фазы. На такой огромной межфазной поверхности может адсорбироваться большое количество стабилизирующих эмульсию веществ — эмульгаторов. Основными эмульгаторами и стабилизаторами эмульсий являются высокомолекулярные соединения нефти (асфальтены, смолы и высокоплавкие парафины) и высокодиспергированные твердые минеральные частицы.

Считают, что устойчивость образующихся эмульсий зависит не сколько от концентрации эмульгаторов (асфальтенов, смол и др.) в нефти, сколько от их степени дисперсности, которое в свою очередь определяется содержанием в нефти парафиновых и ароматических углеводородов.

Эмульсии со временем разрушаются. В некоторых случаях возникает необходимость ускорить разрушение эмульсий, например, разрушение эмульсии в сырой нефти. Ускорить процесс разрушения можно всеми путями, ведущими к уменьшению прочности защитной пленки эмульгатора и увеличению возможности соприкосновения частиц друг с другом.

1 ПРИЧИНЫ ОБРАЗОВАНИЯ И СВОЙСТВА НЕФТЯНЫХ ЭМУЛЬСИЙ

Поскольку водонефтяная эмульсия представляет собой неустойчивую систему, тяготеющую к образованию минимальной поверхности раздела фаз, вполне естественно ожидать наличие у нее склонности к расслоению. Однако в реальных условиях эксплуатации нефтедобывающего оборудования во многих случаях образуются эмульсии, обладающие высокой устойчивостью. Это в значительной степени определяет выбор технологии их дальнейшей обработки, а также глубину отделения водной фазы от нефти. Агрегативную устойчивость эмульсий измеряют временем их существования до полного разделения образующих эмульсию жидкостей. В случае эмульсий, полученных из разных нефтей, их устойчивость может составлять от нескольких секунд до года и более.

Устойчивость нефтяных эмульсий зависит от величины глобул воды (ее дисперсности), плотности и вязкости нефти, содержания в ней легких фракций углеводородов, эмульгаторов и стабилизаторов эмульсии, а также от состава и свойств эмульгированной воды.

К естественным стабилизаторам эмульсий относят содержащиеся в нефти асфальтены, смолы, нафтены и парафины, являющиеся природными ПАВ. Кроме того, к ним относят мельчайшие твердые частицы веществ (глина, кварц, соли и т. д.), находящихся в продукции скважин во взвешенном состоянии.

В зависимости от концентрации дисперсной фазы в эмульсиях их подразделяют на разбавленные или слабо концентрированные (дисперсной фазы менее 20 %), концентрированные (до 74 %) и высококонцентрированные (свыше 74 %). Разбавленные эмульсии с мелкодисперсной структурой обладают высокой стойкостью к разрушению.

В промысловых эмульсиях размер капель дисперсной водной фазы обычно составляет от 0,1 до 250 мкм. Капли более крупного размера могут существовать только в потоке вследствие быстрой седиментации в статических условиях.

Устойчивость большинства нефтяных эмульсий типа «вода в нефти» со временем возрастает. В процессе старения эмульсии на глобулах воды увеличивается слой эмульгатора и, соответственно, повышается его механическая прочность. При столкновении таких глобул не происходит их коалесценции из-за наличия прочной гидрофобной пленки. Для слияния глобул воды необходимо эту пленку разрушить и заменить ее гидрофильным слоем какого-либо ПАВ. Старение эмульсий интенсивно протекает только в начальный период после их образования, а затем заметно замедляется. Особенности старения обратной эмульсии зависят от состава и свойств нефти, пластовой воды, условий образования эмульсии (температура, интенсивность перемешивания фаз.

К основным характеристикам нефтяных эмульсий относят степень разрушения за определенный период времени, эффективную (в ряде случаев структурную) вязкость, средний поверхностно-объемный диаметр эмульгированных капель водной фазы. В совокупности эти параметры отражают интенсивность эмульгирования нефти, ее физико-химические свойства и адсорбцию эмульгатора.

Об интенсивности разрушения эмульсии можно судить по разности между плотностями воды и нефти rD, а также отношению суммарного содержания асфальтенов (а) и смол (с) к содержанию парафинов (n) в нефти (а+с)/n. Последний показатель предопределяет способ деэмульгирования нефтяных эмульсий. Показатель rD соответствует движущей силе гравитационного отстаивания. Оба показателя являются качественными характеристиками эмульсий и позволяют разделять их на группы.

В зависимости от соотношения плотностей воды и нефти эмульсии классифицируют [5] на трудно расслаиваемые (rD = 0,200-0,250 г/см 3 ), расслаиваемые (rD = 0,250-0,300 г/см 3 ) и легко расслаиваемые (rD = 0,300-0,350 г/см 3 ). По показателю (а+с)/n нефти подразделяют на смешанные ((а+с)/n = 0,951-1,400), смолистые ((а+с)/n = 2,759-3,888) и высокосмолистые ((а+с)/n = 4,774-7,789).

Совместный подъем пластовых жидкостей в скважинах происходит с одновременным их смешением и диспергированием в насосном оборудовании. Интенсивное перемешивание пластовых жидкостей в рабочих органах насосных установок и последующая адсорбция природных стабилизаторов на межфазной поверхности в подъемнике приводят к тому, что на устье скважин формируются агрегативно устойчивые высокодисперсные эмульсии обратного типа.

В скважинах, оборудованных УЭЦН, эмульсеобразование происходит наиболее интенсивно. Средний поверхностно-объемный диаметр капель равен 3-8 мкм, причем какой-либо определенной зависимости размера капель от типоразмера насоса не установлено. На месторождениях вязкой нефти диаметр эмульгированных капель несколько больше. Согласно формирование дисперсной структуры эмульсии в УЭЦН завершается на первых сорока ступенях насоса. В дальнейшем, по мере подъема нефти в НКТ, структура эмульсии не претерпевает существенных изменений. С повышением вязкости и плотности нефти вязкость эмульсий образовавшихся в УЭЦН возрастает, а их стойкость увеличивается.

При добыче нефти штанговыми насосами особенно сильное эмульгирование происходит в клапанных узлах насосов и резьбовых соединениях НКТ. Эмульсия начинает формироваться при движении жидкости через насос. Средний диаметр капель водной фазы на выходе из насоса составляет около 90 мкм. В дальнейшем эмульгирование нефти протекает в НКТ за счет турбулизации потока при омывании встречных конструктивных элементов труб (например, муфт штанговых колонн).

Часть энергии, затрачиваемая на диспергирование эмульсии, концентрируется на межфазной поверхности в виде энергии поверхностного натяжения. Однако ожидаемое слияние капель сдерживается защитными адсорбционными слоями эмульгатора на межфазной поверхности. По той же причине затруднено дробление капель дисперсной фазы в движущемся потоке.

2 ЗАЗРУШЕНИЕ ВОДОНЕФТЯНЫХ ЭМУЛЬСИЙ

Существуют следующие способы разрушения нефтяных эмульсий:

— воздействие магнитного поля.

Отстаивание применяют при высокой обводненности нефти и осуществляют путем гравитационного осаждения диспергированных капель воды. На промыслах применяют отстойники периодического и непрерывного действия разнообразных конструкций. В качестве отстойников периодического действия обычно используют сырьевые резервуары, при заполнении которых сырой нефтью происходит осаждение воды в их нижнюю часть. В отстойниках непрерывного действия отделение воды происходит при непрерывном прохождении обрабатываемой смеси через отстойник. В зависимости от конструкции и расположения распределительных устройств движение жидкости в отстойниках осуществляется в преобладающем направлении горизонтально или вертикально.

Фильтрацию применяют для разрушения нестойких эмульсий. В качестве материала фильтров используются вещества, не смачиваемые водой, но смачиваемые нефтью. Поэтому нефть проникает через фильтр, а вода — нет.

Целью использования центрифуги является повышение эффективности разделения на фазы водонефтяной эмульсии, сокращение количества аппаратов, используемых в схемах промысловой подготовки нефти и газа, т.е. снижение металлоемкости добывающей нефтяной промышленности, удаление вместе с водой присутствующих в ней механических примесей, т.е. повышение эксплуатационной надежности промысловых трубопроводов.

В настоящее время в промысловой подготовке добываемой водонефтяной эмульсии, чтобы отделить нужные и ценные продукты: нефть и газ от воды и друг от друга выполняются всего две операции: разгазирование и обезвоживание, но чтобы осуществить эти две операции применяются очень громоздкие схемы цепей аппаратов. Все эти схемы цепей аппаратов вместе с насосными станциями для откачки отделенных друг от друга воды и нефти занимают очень много места, все аппараты соединены между собой большим количеством трубопроводов, на которых установлено большое количество разнообразных задвижек для отключения данного аппарата из схемы в случае ремонта или аварийного выхода из строя. Все это большое количество оборудования очень сложно обслуживать.

Кроме того, в извлекаемой на поверхность водонефтяной эмульсии содержится очень большое количество механических примесей, которые потом при движении по трубопроводам действуют как абразив, протачивая во всех трубопроводах канавки, и их стенки истончаются до такой степени, что под действием повышенного давления в трубопроводе он разрывается и это приводит к авариям с большими материальными, экономическими и экологическими затратами и потерями.

Т.о. сокращение количества аппаратов в схемах промысловой подготовки нефти и уменьшнение количества порывов промысловых трубопроводов являются первостепенейшими и актуальнейшими задачами, а решение этих проблем вместе позволит снизить металлоемкость нефтедобывающей промышленности.

Все эти задачи позволяет решить предлагаемый способ разделения водонефтяных эмульсий с помощью центрифугирования, который широко применялся на промыслах США в 1920-1940 гг.

В предлагаемом способе подготовки нефти вместо традиционного гравитационного используется более мощная центробежная сила для разделения на фазы водонефтяной эмульсии. Разница в осуществлении способа состоит в том, что в традиционном многоаппаратном способе сначала идет операция разгазирования и только потом осуществляется операция обезвоживания. В предлагаемом же способе сначала идет обезвоживание и только потом проводится разгазирование нефти, но обе эти операции осуществляются одновременно и в одном аппарате.

Рисунок 1 — Сепаратор для разделения эмульсий : 1 — ротор; 2 — пакет тарелок ; Ф 1 и Ф 2 — фугаты; Э — эмульсия .

Центрифуги обладают очень большими недостатками: они имеют цилиндрический барабан и, разделяемая жидкость поступает в него с одного конца, а разделенные компоненты выходят с другого конца барабана, т.е. перемещение жидкости идет вдоль оси центрифуги с очень небольшой скоростью, а присутствующие в жидкости механические примеси, как материал, имеющий большую плотность, прижимаются к стенкам барабана центрифуги и еще больше замедляют движение жидкости вдоль оси центрифуги. Поток жидкости при такой малой скорости неспособен смыть и унести с собой механические примеси. По этим причинам применяемые центрифуги имеют очень низкую производитльность и большую энергоемкость.

Число оборотов центрифуги имеет огромное значение. При малой скорости будет недостаточна центробежная сила и центрифуга не выполнит своего назначения. При слишком большой скорости вращения стенки барабана могут не выдержать разрывающих усилий и произойдет авария. При эксплуатации центрифуг нужно иметь в виду, что в начальной стадии, когда барабан развивает вращение, осадок неравномерно распределяется по поверхности барабана. В результате барабан начинает «бить», что крайне вредно отражается на прочности станины. Для смягчения толчков и ударов центрифугам придаются резиновые амортизаторы. По этим же соображениям на центрифугах устанавливают тормоз, позволяющий после выключения электромотора плавно и сравнительно быстро остановить барабан. Также важно, чтобы при изготовлении центрифуги барабан был тщательно сбалансирован (центр тяжести барабана и вала должен совпадать с осью вращения. Пусковой период для двигателя представляет наибольшую трудность, поскольку ему приходится преодолевать инерцию барабана, инерцию находящейся в нем жидкости и трение барабана о воздух. В связи с этим мощность центрифуги всегда рассчитывают на пусковой период. Рабочая мощность обычно в 2-3 раза меньше пусковой.

На работу центрифуг существенно влияет вязкость жидкой фазы. С увеличением этого параметра производительность центрифуги уменьшается. Поэтому в некоторых случаях (когда это допустимо) для уменьшения вязкости жидкости прибегают к ее нагреву. Нагревание эмульсии приводит не только к умень­шению вязкости, но и снижению

Предлагаемый способ промысловой подготовки нефти решает большинство актуальнейших задач, стоящих перед добывающей нефтяной промышленностью.

Для размещения оборудования предлагаемого способа не нужно много места, оно очень компактно и его легко монтировать и обслуживать.

Центрифуги могут иметь практически любую производительность, их очень легко можно будет автоматизировать.

Термическое воздействие на водонефтяные эмульсии заключается в том, что нефть, подвергаемую обезвоживанию, перед отстаиванием нагревают до температуры 45-80 0 С. При нагревании уменьшается прочность слоев эмульгатора на поверхности капель, что облегчает их слияние. Кроме того, уменьшается вязкость нефти и увеличивается разница плотностей воды и нефти, что способствует быстрому разделению эмульсии. Подогрев осуществляют в резервуарах, теплообменниках и трубчатых печах.

Разложение эмульсий электрическим методами, ввиду сравнительной простоты необходимых для этой цели установок, применимости для большинства эмульсий и достаточной надежности в работе, получило широкое распространение. Электрический способ разрушения эмульсий применяют на нефтеперерабатывающих заводах при обессоливании нефти на ЭЛОУ (электроочистительных установках), а также при очистки нефтепродуктов от водных растворов щелочей и кислот (электрофайнинг). В обоих случаях используют электрическое поле высокой напряженности. Под действием электрического поля взвешенные частицы воды сливаются в более крупные, которые под действием силы тяжести осаждаются вниз. Отстоявшаяся вода с растворенными в ней солями выводится из нижней части электородегидратора, обезвоженная нефть — из верхней части. Для достижения минимального содержания солей нефть промывают на ЭЛОУ, состоящих из 2-3 последовательно соединенных ступеней электродегидраторов. Основными технологическим параметрами процесса являются: температура, давление, удельная производительность дегидраторов, расход диэмульгатора, расход промывной воды и степень ее смешения с нефтью, напряженность электрического поля. Применяемый на ЭЛОУ подогрев нефти позволяет уменьшить ее вязкость, что существенно повышает подвижность капелек воды в нефтянойсреде и ускоряет их коалесценцию. Вместе с тем подогрев нефти на ЭЛОУ сопряжен с серьезными недостатками. С повышением температуры сильно увеличивается электропроводность нефти и, соответственно, повышается расход электроэнергии, значительно усложняются условия работы проходных и подвесных изоляторов. Поэтому подогрев разных нефтей на ЭЛОУ проводят в интервале температур 60-1500С, выбирая для каждой нефти оптимальное значение, обеспечивающее минимальные затраты на ее обессоливание.

Внутритрубную деэмульсацию проводят посредством добавления в эмульсию химического реагента-деэмульгатора. Это позволяет разрушать эмульсию в трубопроводе, что снижает ее вязкость и уменьшает гидравлические потери.

Для каждого состава нефти подбирают свой наиболее эффективный деэмульгатор, предварительно оценив результаты отделения пластовой воды в лабораторных условиях.

Любое органическое вещество, обладающее моющими свойствами, может с той или иной эффективностью использоваться в качестве деэмульгатора. Высокоэффективные деэмульгаторы, применяемые на нефтепромыслах и нефтеперерабатывающих заводах для обезвоживания и обессоливания нефти, содержат смесь ПАВ различных структур и модификаций. Теории, объясняющие механизм действия деэмульгаторов, разделяют на две группы:

— физическая, предполагающая протекание физической адсорбции молекул деэмульгатора на коллоидных частицах, разрыхляющее и модифицирующее действие деэмульгаторов на межфазный слой, которое способствует вытеснению и миграции молекул (частиц) стабилизатора в ту или иную фазу;

— химическая, основанная на предположении о преобладающей роли хемосорбции молекул деэмульгатора на компонентах защитного слоя с образованием прочных химических связей, в результате чего природные стабилизаторы нефти теряют способность эмульгировать воду.

Согласно общепринятой в настоящее время теории, разработанной под руководством академика П.А. Ребиндера, при введении ПАВ в нефтяную эмульсию на границе раздела «нефть — вода» протекают следующие процессы. ПАВ, обладая большей поверхностной активностью, вытесняет природные стабилизаторы с поверхности раздела фаз, адсорбируясь на коллоидных или грубодисперсных частицах природных стабилизаторов нефтяных эмульсий. Молекулы деэмульгаторов изменяют смачиваемость, что способствует переходу этих частиц с границы раздела в объем водной или нефтяной фаз. В результате происходит коалесценция.

Таким образом, процесс разрушения нефтяных эмульсий является в большей степени физическим, чем химическим и зависит от:

— компонентного состава и свойства защитных слоев природных стабилизаторов;

— типа, коллоидно-химических свойств и удельного расхода применяемого деэмульгатора;

— температуры, интенсивности и времени перемещения нефтяной эмульсии с деэмульгатором.

Технологический эффект применения деэмульгатора заключается в обеспечении быстрого и полного отделения пластовой воды при его минимальном расходе.

Как правило, подбор высокоэффективного, оптимального для конкретной водонефтяной эмульсии деэмульгатора осуществляют эмпирически. Это обусловлено тем, что в зависимости от технологии добычи и подготовки нефти, ее химического состава, физико-химических свойств и обводненности, минерализации пластовой воды, наличия в ней механических примесей и других факторов к деэмульгатору предъявляются специфические требования.

На нефтегазодобывающих предприятиях нашел также применение метод предотвращения образования стойких эмульсий (метод искусственного увеличения обводненности нефти). Сущность метода заключается в возврате на прием насоса некоторой части добываемой воды, расслоившейся в отстойной расширительной камере или в поле центробежных сил. Избыток водной фазы, образовавшейся в насосе, приводит к переходу водонефтяной смеси из одной структуры потока в другую. Вязкость образовавшейся прямой эмульсии в десятки и сотни раз меньше вязкости обратных эмульсий. В соответствии с этим резко снижается и стойкость прямых эмульсий, что создает благоприятные условия для отделения водной фазы и возвращения некоторого ее объема на прием насоса. Подачу оборотной воды на прием насоса можно осуществить самоподливом в затрубное пространство скважины, без применения дополнительных перекачивающих органов.

Метод самоподлива предполагает потерю производительности установки за счет рециркулируемой части водной фазы. Однако многократное снижение вязкости нефти в колонне труб позволяет существенно увеличить коэффициент подачи установок, что не только компенсирует потерю, но и в ряде случаев повышает производительность насосов.

Наличие значительного количества и разнообразия методов разрушения эмульсий крайне осложняет и затрудняет выявление наиболее рациональных из них. Между тем, нашей задачей является выбор и применение такого метода, который был бы наиболее рациональным. С целью облегчения этой задачи при описаниях различных методов, приведенных выше, дается оценка положительных и отрицательных особенностей каждого из них. Рациональность методов определяется следующим основными показателями качественности их: эффективность, возможность полного отделения воды, максимальная простота метода и оборудования, экономичность процесса.

1. Абрамзон А.А. Поверхностно-активные вещества, свойства и применение. Л.: Химия, 1981.

2. Амелин И.Д., Андриасов Р.С.и др. Эксплуатация и технология разработки нефтяных и газовых скважин. М. Недра, 1978.

3. Воюцкий А. Р. Курс коллоидной химии. М.: Политиздат, 1976.

4. Позднышев Г.Н. Стабилизация и разрушение эмульсий. М.: Недра, 1982.

5. Смирнов Ю.С., Мелошенко Н.Т. Химическое деэмульгирование нефти как основа ее промысловой подготовки //Нефтяное хозяйство, 1989.

Источник

Читайте также:  Рецептура рыба жареная основным способом
Оцените статью
Разные способы
Название: Способы разрушения водонефтяной эмульсии
Раздел: Рефераты по физике
Тип: реферат Добавлен 17:36:07 12 июня 2011 Похожие работы
Просмотров: 1632 Комментариев: 11 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно Скачать