Способы разработки информационной системы

Ещё раз про семь основных методологий разработки

Разработка программного продукта знает много достойных методологий — иначе говоря, устоявшихся best practices. Выбор зависит от специфики проекта, системы бюджетирования, субъективных предпочтений и даже темперамента руководителя. В статье описаны методологии, с которыми мы регулярно сталкиваемся в Эдисоне.

1. «Waterfall Model» (каскадная модель или «водопад»)

Одна из самых старых, подразумевает последовательное прохождение стадий, каждая из которых должна завершиться полностью до начала следующей. В модели Waterfall легко управлять проектом. Благодаря её жесткости, разработка проходит быстро, стоимость и срок заранее определены. Но это палка о двух концах. Каскадная модель будет давать отличный результат только в проектах с четко и заранее определенными требованиями и способами их реализации. Нет возможности сделать шаг назад, тестирование начинается только после того, как разработка завершена или почти завершена. Продукты, разработанные по данной модели без обоснованного ее выбора, могут иметь недочеты (список требований нельзя скорректировать в любой момент), о которых становится известно лишь в конце из-за строгой последовательности действий. Стоимость внесения изменений высока, так как для ее инициализации приходится ждать завершения всего проекта. Тем не менее, фиксированная стоимость часто перевешивает минусы подхода. Исправление осознанных в процессе создания недостатков возможно, и, по нашему опыту, требует от одного до трех дополнительных соглашений к контракту с небольшим ТЗ.

С помощью каскадной модели мы создали множество проектов «с нуля», включая разработку только ТЗ. Проекты, о которых написано на Хабре: средний — рентгеновский микротомограф, мелкий — автообновление службы Windows на AWS.

Когда использовать каскадную методологию?

  • Только тогда, когда требования известны, понятны и зафиксированы. Противоречивых требований не имеется.
  • Нет проблем с доступностью программистов нужной квалификации.
  • В относительно небольших проектах.

2. «V-Model»

Унаследовала структуру «шаг за шагом» от каскадной модели. V-образная модель применима к системам, которым особенно важно бесперебойное функционирование. Например, прикладные программы в клиниках для наблюдения за пациентами, интегрированное ПО для механизмов управления аварийными подушками безопасности в транспортных средствах и так далее. Особенностью модели можно считать то, что она направлена на тщательную проверку и тестирование продукта, находящегося уже на первоначальных стадиях проектирования. Стадия тестирования проводится одновременно с соответствующей стадией разработки, например, во время кодирования пишутся модульные тесты.

Пример нашей работы на основе V-методологии — мобильное приложение для европейского сотового оператора, который экономит расходы на роуминг во время путешествий. Проект выполняется по четкому ТЗ, но в него включен значительный этап тестирования: удобства интерфейса, функционального, нагрузочного и в том числе интеграционного, которое должно подтверждать, что несколько компонентов от различных производителей вместе работают стабильно, невозможна кража денег и кредитов.

Когда использовать V-модель?

  • Если требуется тщательное тестирование продукта, то V-модель оправдает заложенную в себя идею: validation and verification.
  • Для малых и средних проектов, где требования четко определены и фиксированы.
  • В условиях доступности инженеров необходимой квалификации, особенно тестировщиков.

3. «Incremental Model» (инкрементная модель)

В инкрементной модели полные требования к системе делятся на различные сборки. Терминология часто используется для описания поэтапной сборки ПО. Имеют место несколько циклов разработки, и вместе они составляют жизненный цикл «мульти-водопад». Цикл разделен на более мелкие легко создаваемые модули. Каждый модуль проходит через фазы определения требований, проектирования, кодирования, внедрения и тестирования. Процедура разработки по инкрементной модели предполагает выпуск на первом большом этапе продукта в базовой функциональности, а затем уже последовательное добавление новых функций, так называемых «инкрементов». Процесс продолжается до тех пор, пока не будет создана полная система.

Инкрементные модели используются там, где отдельные запросы на изменение ясны, могут быть легко формализованы и реализованы. В наших проектах мы применяли ее для создания читалки DefView, а следом и сети электронных библиотек Vivaldi.

Как пример опишем cуть одного инкремента. Сеть электронных библиотек Vivaldi пришла на смену DefView. DefView подключалась к одному серверу документов, а теперь может подключаться ко многим. На площадку учреждения, желающего транслировать свой контент определенной аудитории, устанавливается сервер хранения, который напрямую обращается к документам и преобразует их в нужный формат. Появился корневой элемент архитектуры — центральный сервер Vivaldi, выступающий в роли единой поисковой системы по всем серверам хранения, установленным в различных учреждениях.

Когда использовать инкрементную модель?

  • Когда основные требования к системе четко определены и понятны. В то же время некоторые детали могут дорабатываться с течением времени.
  • Требуется ранний вывод продукта на рынок.
  • Есть несколько рисковых фич или целей.

4. «RAD Model» (rapid application development model или быстрая разработка приложений)

RAD-модель — разновидность инкрементной модели. В RAD-модели компоненты или функции разрабатываются несколькими высококвалифицированными командами параллельно, будто несколько мини-проектов. Временные рамки одного цикла жестко ограничены. Созданные модули затем интегрируются в один рабочий прототип. Синергия позволяет очень быстро предоставить клиенту для обозрения что-то рабочее с целью получения обратной связи и внесения изменений.

Модель быстрой разработки приложений включает следующие фазы:

  • Бизнес-моделирование: определение списка информационных потоков между различными подразделениями.
  • Моделирование данных: информация, собранная на предыдущем этапе, используется для определения объектов и иных сущностей, необходимых для циркуляции информации.
  • Моделирование процесса: информационные потоки связывают объекты для достижения целей разработки.
  • Сборка приложения: используются средства автоматической сборки для преобразования моделей системы автоматического проектирования в код.
  • Тестирование: тестируются новые компоненты и интерфейсы.

Когда используется RAD-модель?

Может использоваться только при наличии высококвалифицированных и узкоспециализированных архитекторов. Бюджет проекта большой, чтобы оплатить этих специалистов вместе со стоимостью готовых инструментов автоматизированной сборки. RAD-модель может быть выбрана при уверенном знании целевого бизнеса и необходимости срочного производства системы в течение 2-3 месяцев.

5. «Agile Model» (гибкая методология разработки)

В «гибкой» методологии разработки после каждой итерации заказчик может наблюдать результат и понимать, удовлетворяет он его или нет. Это одно из преимуществ гибкой модели. К ее недостаткам относят то, что из-за отсутствия конкретных формулировок результатов сложно оценить трудозатраты и стоимость, требуемые на разработку. Экстремальное программирование (XP) является одним из наиболее известных применений гибкой модели на практике.

В основе такого типа — непродолжительные ежедневные встречи — «Scrum» и регулярно повторяющиеся собрания (раз в неделю, раз в две недели или раз в месяц), которые называются «Sprint». На ежедневных совещаниях участники команды обсуждают:

  • отчёт о проделанной работе с момента последнего Scrum’a;
  • список задач, которые сотрудник должен выполнить до следующего собрания;
  • затруднения, возникшие в ходе работы.

Методология подходит для больших или нацеленных на длительный жизненный цикл проектов, постоянно адаптируемых к условиям рынка. Соответственно, в процессе реализации требования изменяются. Стоит вспомнить класс творческих людей, которым свойственно генерировать, выдавать и опробовать новые идеи еженедельно или даже ежедневно. Гибкая разработка лучше всего подходит для этого психотипа руководителей. Внутренние стартапы компании мы разрабатываем по Agile. Примером клиентских проектов является Электронная Система Медицинских Осмотров, созданная для проведения массовых медосмотров в считанные минуты. Во втором абзаце этого отзыва, наши американские партнеры описали очень важную вещь, принципиальную для успеха на Agile.

Читайте также:  Форма договора способы его заключения

Когда использовать Agile?

  • Когда потребности пользователей постоянно меняются в динамическом бизнесе.
  • Изменения на Agile реализуются за меньшую цену из-за частых инкрементов.
  • В отличие от модели водопада, в гибкой модели для старта проекта достаточно лишь небольшого планирования.

6. «Iterative Model» (итеративная или итерационная модель)

Итерационная модель жизненного цикла не требует для начала полной спецификации требований. Вместо этого, создание начинается с реализации части функционала, становящейся базой для определения дальнейших требований. Этот процесс повторяется. Версия может быть неидеальна, главное, чтобы она работала. Понимая конечную цель, мы стремимся к ней так, чтобы каждый шаг был результативен, а каждая версия — работоспособна.

На диаграмме показана итерационная «разработка» Мона Лизы. Как видно, в первой итерации есть лишь набросок Джоконды, во второй — появляются цвета, а третья итерация добавляет деталей, насыщенности и завершает процесс. В инкрементной же модели функционал продукта наращивается по кусочкам, продукт составляется из частей. В отличие от итерационной модели, каждый кусочек представляет собой целостный элемент.

Примером итерационной разработки может служить распознавание голоса. Первые исследования и подготовка научного аппарата начались давно, в начале — в мыслях, затем — на бумаге. С каждой новой итерацией качество распознавания улучшалось. Тем не менее, идеальное распознавание еще не достигнуто, следовательно, задача еще не решена полностью.

Когда оптимально использовать итеративную модель?

  • Требования к конечной системе заранее четко определены и понятны.
  • Проект большой или очень большой.
  • Основная задача должна быть определена, но детали реализации могут эволюционировать с течением времени.

7. «Spiral Model» (спиральная модель)

«Спиральная модель» похожа на инкрементную, но с акцентом на анализ рисков. Она хорошо работает для решения критически важных бизнес-задач, когда неудача несовместима с деятельностью компании, в условиях выпуска новых продуктовых линеек, при необходимости научных исследований и практической апробации.

Спиральная модель предполагает 4 этапа для каждого витка:

  1. планирование;
  2. анализ рисков;
  3. конструирование;
  4. оценка результата и при удовлетворительном качестве переход к новому витку.

Эта модель не подойдет для малых проектов, она резонна для сложных и дорогих, например, таких, как разработка системы документооборота для банка, когда каждый следующий шаг требует большего анализа для оценки последствий, чем программирование. На проекте по разработке СЭД для ОДУ Сибири СО ЕЭС два совещания об изменении кодификации разделов электронного архива занимают в 10 раз больше времени, чем объединение двух папок программистом. Государственные проекты, в которых мы участвовали, начинались с подготовки экспертным сообществом дорогостоящей концепции, которая отнюдь не всегда бесполезна, поскольку окупается в масштабах страны.

Подытожим

На слайде продемонстрированы различия двух наиболее распространенных методологий.

В современной практике модели разработки программного обеспечения многовариантны. Нет единственно верной для всех проектов, стартовых условий и моделей оплаты. Даже столь любимая всеми нами Agile не может применяться повсеместно из-за неготовности некоторых заказчиков или невозможности гибкого финансирования. Методологии частично пересекаются в средствах и отчасти похожи друг на друга. Некоторые другие концепции использовались лишь для пропаганды собственных компиляторов и не привносили в практику ничего нового.

Источник

Секреты удачного проектирования ИС (информационной системы) на примере строительства больницы

Почему именно больница?

А почему бы и нет? Это хороший пример. Проект везде проект: плюс-минус те же стадии, та же схема управления, документооборот, работа с рисками, контроль качества и так далее. Везде есть требования и к оборудованию, и к помещениям, и к ПО. Вы спросите, какие могут быть требования к помещениям в Информационной Системе? Очень просто: расположение рабочих мест операторов, сервера — и тем и другим потребуется кондиционер. Вот уже и требования к помещениям. И вряд ли нынче кто-то сомневается, нужно ли больнице ПО. Если вы хотите идти в ногу со временем, перед вами встанет задача создать автоматизированное лечебное учреждение с электронными медицинскими картами, где врачи делают осмотр с планшетами, а, например, санитарки отмечают вымытый туалет не на листике, а в телефоне. Требований к ПО в данном случае будет предостаточно. А как только потребуется ПО, появится необходимость установить сервера, куда-то посадить админа и операторов. Все взаимосвязано.

Мы выбрали строительный проект, потому что на нем проще всего продемонстрировать, как спроектировать ИС. Информационная система скрыта где-то внутри, мы ее не видим, а стены — вот они перед нами: кривые и косые, с тупиковыми коридорами, потому что проект был сделан на коленке, да еще и заказчик свои требования менял сто раз по ходу пьесы.

Программный код внутри (но этого никто не видит)

При чем тут больница, если мы разрабатываем ПО?

А вот и нет, дорогие разработчики, руководители, аналитики, тестировщики.

Не программное обеспечение вы разрабатываете… Возьмем Android, — это ПО. А если, например, перед вами бухгалтерская система, то вы уже имеете дело не просто с ПО, а с ИНФОРМАЦИОННОЙ СИСТЕМОЙ.

Отличие очевидно. Если вы купили телефон — все просто: включаете его, запускается зеленый человечек (Android), пользуетесь. А если вы приобрели коробку с бухгалтерским ПО, то ясно, что теперь необходимы сервера, надо настроить сеть, сконфигурировать рабочие станции, обучить сотрудников, интегрировать систему с остальными ИС предприятия, погонять систему в тестовом режиме. Да и бухгалтеров надо еще как-то уговорить перейти на новый софт, далеко не все из них готовы к новациям. В общем, в любом IT-проекте 10-20% это IT, а все остальное — организационные и административные меры, ну и очень плотная, ювелирная, работа с персоналом.

Информационная система (разве это только ПО?)

И, наконец, вспомним определение системы еще из далеких 90-х годов, которое никто не отменял:

Автоматизированная система: система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая информационную технологию выполнения установленных функций.

ГОСТ 34.003-90. Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Термины и определения.

То есть, ИС в первую очередь — это люди, плюс технология, помогающая автоматизировать их деятельность, и никак не наоборот.

Как спроектировать больницу

Представим, что вы строительная организация, к вам приходит заказчик и просит в таком-то месте построить больницу. Вы сразу побежите кирпичи класть или…? Если смотреть на то, как зачастую создаются Информационные Системы, то так и есть: исполнители тут же начинают «мешать бетон и закупать стеклопакеты». Мол, выйдет не так — перестроим! Будем перестраивать, пока не добьемся нужного результата.

Однако, если вы серьезная организация, то сперва предложите заказчику ПРОЕКТ строительства. Согласны? А почему с Информационной Системой не так? Может, дело не в различиях между строительством и разработкой ПО, а в том, что в случае той же больницы сначала много думают, планируют, а потом строят, а ПО сначала разрабатывают и затем думают? Не потому ли много слышно о криворуких программистах, но ничего о таких же гастарбайтерах на стройке? Строители работают по проекту, в отличие от разработчиков.

Без проекта всегда так, даже если этого не видно

Рассмотрим теперь процесс проектирования подробнее. В нем несколько стадий. Зачем же нужно проходить несколько этапов, почему за один раз не сделать? Для ясности приведу школьный пример… Сколько лет в школе изучают операцию умножения? Вы скажете — один-два месяца, и будете в корне неправы. Да, как умножать 5 на 6, проходят за неделю. Еще определенное время учат таблицу умножения. А умножение дробей, чисел со степенью, логарифмов, выражений в скобках, комплексных чисел, возведение в степень сколько изучают? Почти все школьные годы! Получается, мы одно и то же умножение изучаем каждый год под разными углами.

Читайте также:  Способы содержания крс литература

И почему такое не изучают в первом классе?

Так вот, любой процесс и обучения, и проектирования, цикличен. Сначала мы получили общие понятия о числах, потом научились выполнять с ними простейшие действия, затем узнали про дроби и научились с ними работать, и так далее.

Сначала мы осознали, какую проблему должны решить с помощью Информационной Системы. Затем определили круг решаемых задач, поняли, ЧТО должна делать система, какие действия должен выполнять персонал. Потом продумали, КАК система должна выполнять определенные ранее задачи. Эти этапы можно перескочить, только придется возвращаться обратно и все переделывать: семь раз отмерить и один раз отрезать получается гораздо быстрее, чем наоборот, да и материала уйдет меньше.

Приведем еще пример. Вы на вершине горы смотрите вниз в сильный бинокль и пытаетесь составить детальный маршрут спуска. В окуляры можно рассмотреть каждый камешек на тропинке, каждую лужу. Но вот та ли эта тропинка и ведет ли она на вершину, в бинокль не видно: отсутствует общий план. Разумный альпинист сначала невооруженным глазом наметит пути спуска, а затем их будет рассматривать под сильным увеличением. Как только вы окунаетесь в детализацию, теряете общий взгляд на проект. Взяв сразу подзорную трубу, вы идеально опишите 10 функций, при этом забудете про 40 остальных, вообще про них не упомянете.

Видно хорошо, но только малую часть

Сложность поэтапного проектирования в том, что в начале процесса приходится оперировать абстрактными понятиями. Так хочется «пощупать» что-то готовое, а не говорить о неких требованиях, функциях, задачах, процессах. Нарисовать сразу интерфейс пользователя проще, но и легче упустить как минимум половину требований. Если же вначале составить детализированный список операций, которые должен выполнить пользователь при работе с той или иной экранной формой, то дизайнеру останется только нарисовать, а не фантазировать, как это часто бывает.

Теперь наконец-то перейдем к рассмотрению стадий проектирования.

1. Составление общих требований

Итак, допустим вы — проектант. К вам приходит заказчик, «посланный» ответственными строителями. Заказчик, естественно, просит вас разработать проект больницы. Вы бежите к кульману и… Ну ладно, это уже древность — запускаете ArchiCAD и чертите.

Но конечно речь не о вас. Вы — профессионал и начинаете задавать кучу «глупых» вопросов. И самый главный из них — зачем нужно строить больницу? Какова цель строительства? Если цель не понятна, то вы не сможете ответить на вопрос, большая это должна быть больница или маленькая, какого профиля, чем оснащенная. К сожалению, заказчики зачастую говорят очень много всего интересного, кроме главного, — какова их цель. Вот это надо «вытащить» из них в первую очередь. И задать вопрос должны вы. Сам заказчик — не специалист, у него есть идея, и на этом он видит свою роль выполненной. Он не понимает, какой путь необходимо пройти для реализации его идеи. Как правило, заказчик ждет старого доброго чуда — прийти на берег моря, закинуть невод (заплатить деньги), выловить рыбку, и она исполнит его желание… А случается как в анекдоте про богатого мужика, который поймав золотую рыбку, попросил выполнить одно желание: «Хочу, чтобы у меня все было!» — «Нет проблем, — ответила рыбка, — у тебя все было. »

Чтобы вникнуть в цель проекта, недостаточно составить пару предложений со стандартным набором фраз. Цель проекта обычно определяется на основе противопоставления: описывают существующую информационную модель (например, сидят люди в архиве и бумажки перебирают), затем — ее недостатки (из-за отсутствия автоматизации в архиве задействовано 10 человек, что явно избыточно, другие отделы не могут неделями получить из архива нужную им информацию и т.д.) и предлагают решение (внедрить ПО, которое позволит осуществлять в автоматизированном режиме ряд операций, операции надо перечислить). В случае, если на рынок выводится совершенно новый вид сервиса, то требуется изучить существующий рынок и «покритиковать» имеющиеся там инструменты, затем предложить решение.

Кроме того, на данной стадии необходимо определить, какие требования законодательства необходимо учесть, как юридически оформить те или иные операции, как будет монетизироваться новый сервис, как планируется выходить на рынок, как заинтересовать внешних участников новой системы.

Иными словами, следует составить бизнес-модель. С одной стороны, это как бы и не задача разработчиков, а, с другой, без четкого определения цели и способов ее реализации непонятно, какие задачи должна решать система. А если заказчик сам толком еще не сформулировал, что ему нужно, вряд ли он будет доволен хоть каким-нибудь результатом.

2. Выбор концепции системы

На данном этапе необходимо выбрать общие технические решения, с помощью которых могут быть выполнены требования, составленные на предыдущем этапе. Будет ли это веб-приложение или нативное, толстый клиент или тонкий, централизованная база или распределенная, реляционная СУБД или noSQL, монолит или микросервисы, Java или Python. Часто данные вопросы забывают обсудить вовремя, а потом оказывается, что кто-то из программистов самостоятельно выбрал определенный инструмент, а в конце концов данное решение не позволяет достичь поставленной цели.

3. Разработка Технического Задания

Составили общие требования к больнице, выбрали концепцию. «Ну, — скажет заказчик, — теперь все понятно, можно чертить». А можно ли? Требования-то общие, их надо детализировать. Например, на первом этапе вы определили, что должна иметься лаборатория по анализу крови. Но какое там будет оборудование, сколько оно потребляет электроэнергии, сжатого воздуха (а вдруг?), нужны ли кварцевые лампы для дезинфекции, лабораторные столы, вентиляция? Без этого проектировать тяжеловато будет. Это, во-первых. А во-вторых, необходимо прописать план строительства больницы, подготовки и ввода ее в эксплуатацию.

Для Информационной Системы разработка ТЗ (Технического задания) — центральная часть проекта. Техническое задание описывает:

  1. ЧТО должна делать система.
  2. Какова должна быть общая структура системы.
  3. Как создать систему.

То есть, ТЗ содержит функциональные и нефункциональные требования, а также требования к этапам разработки, сдаче-приемке, документации. Также в ТЗ должны быть кратко описаны процессы, которые мы собственно автоматизируем.

При описании функций системы (а это центральная часть ТЗ) следует понимать — мы приводим требования к тому, ЧТО должна делать система, а не КАК. Для вас должна быть важнее широта охвата, а не глубина. Например, на первой стадии (составление общих требований) мы выявили необходимость наличия функции блокировки входа пользователя. В ТЗ указали, что учетная запись блокируется при неиспользовании в течение 90 дней или после 6-и неудачных попыток входа, доступ может быть ограничен администратором на определенный срок, при попытке входа заблокированного пользователя необходимо выводить сообщение и т.д. А в техническом проекте (забежим вперед), мы с вами нарисуем макет карточки пользователя с флажком блокировки и датой разблокировки, составим сценарий входа в систему, в котором производится проверка на блокировку, автоматическая разблокировка по истечении установленного срока, блокировка в случае неудачных попыток входа; определим, что выполняется на стороне клиента, а что — сервера.

Хочется развенчать несколько мифов, связанных с разработкой технического задания.

Миф первый: В ТЗ содержатся требования только к исполнителю.

Нет, ТЗ — это то, как создать систему, и в техзадании есть разделы, в которых можно описать распределение ответственности.

Миф второй: В Техническом задании часто очень много «воды».

Действительно, нередко ТЗ содержит общие сведения о системе, но они нужны. Например, мы обсуждали-обсуждали требования к системе, в результате одна команда поняла, что нужно разработать приложение под Windows, а другая — для браузера. Одна думала, что система называется так, а другая — по-другому. Вроде бы очевидные вещи, но они должны пониматься одинаково всеми членами команды и всеми привлеченными специалистами.

Читайте также:  Язык танца язык запахов язык движения это далеко не все способы общения

Миф третий: Требования к персоналу, серверам, каналам связи, режимам работы администраторов являются лишними, так как находятся в сфере ответственности заказчика.

Во-первых, как мы уже рассматривали, ТЗ пишется для всех сразу, а во-вторых, ТЗ описывает, как сделать так, чтобы система заработала, а не только было написано ПО. Иначе будет еще одна лежащая на полке коробка с диском и толстой инструкцией. Таким образом, организационная часть ТЗ, нефункциональные требования, не менее важны, чем требования функциональные.

Подробнее составление ТЗ мы рассматриваем в отдельной статье Разработка Технического задания по ГОСТ 34 легко и просто.

4. Разработка технического проекта

Итак, двигаемся дальше. Вот перед вами (мы же допустили, что вы — проектант) Техническое Задание на строительство больницы с огромным перечнем требований. Сидите вы, смотрите грустно на 100 страниц ТЗ, и не знаете, с чего начать. Потом картина постепенно начинает проясняться. Думаете: ага, нам нужно столько-то метров под палаты, столько-то под кухню, столько-то на зону отдыха, лабораторию, сестринские и так далее и тому подобное. Затем на свет появляется множество набросков, эскизов, вариантов, вы переделываете, меняете помещения местами, короче, ищете оптимальные соотношения. Потом переходите к деталям — чертежи, чертежи, чертежи: стены, двери, окна, кабель-каналы, проводка, трубы, вентиляция, межэтажные перекрытия, материалы стен, отделка… и прочее, и прочее, и прочее. В общем, подробно-подробно, насколько это возможно, очерчиваете то, как должна выглядеть и функционировать больница после завершения строительства.

При разработке технического проекта Информационной Системы необходимы документы, содержащие следующее: подробные сценарии, описывающие работу и взаимодействие разрабатываемой системы, пользователей и смежных систем; детальные макеты пользовательского интерфейса, содержащие описание типа данных и поведения каждого элемента интерфейса (значение по умолчанию, условия, при которых можно изменить значение поля, видимость, действия, выполняемые системой при изменении элемента и т.п.); описание протоколов для интеграции со смежными системами и оборудованием, формы отчетов и описание алгоритма их формирования, структуру серверов и баз данных, если их несколько.

Обычно этого более чем достаточно, чтобы была возможность отдать документы разработчикам и получить вменяемый результат. Детальные макеты и сценарии дают достаточно информации о поведении системы и интерфейса, а также о структуре данных. Разработчики будут поставлены в жесткие рамки, в которых фантазировать можно, но потом будет не отвертеться.

Надеюсь, в следующих статьях мы более подробно рассмотрим то, как качественно выполнить техническое проектирование, как разработать макеты, сценарии, какие документы необходимо составить.

5. Разработка рабочей документации

Логичный вопрос — какая такая рабочая документация для больницы? Неужто инструкция по уборке коридора?! Шутки шутками, а противопожарную систему надо обслуживать? Надо. А лифты? А компьютерные сети? А водопровод? «Ну, это к проекту больницы не относится!» — скажете вы. Да, отчасти это так. Однако больница сдается заказчику как единое целое, и все системы должны иметь соответствующую эксплуатационную документацию. И чтобы сдача была быстрой, успешной, вы составите перечень требований, напротив которых можно ставить галочку, если все в порядке.

Наличие руководств пользователя и администратора для ИС — это стандарт, с этим все понятно. А вот о процессе сдачи-приемки системы заказчику часто задумываются в последний момент. И напрасно. Для этого существует прекрасный документ «Программа и методика испытаний», тоже обычно относящийся к рабочим документам. Он представляет собой своего рода чек-лист, содержащий описание проверочных процедур. Если данный документ составлен заранее (а сценарий, как основу, можно из техпроекта позаимствовать), то у разработчиков будет четкий критерий приемки их работ. Вам не понадобится собственным или аутсорсинговым программистам доказывать свою правоту — есть сценарий, он должен отрабатываться. И с заказчиком проблем не будет — фантазия уже ограничена документом.

А где же здесь место для Agile?

Одни люди двумя руками за Agile (или иные «гибкие» методы разработки), другие резко против. У автора же статьи свое мнение: Agile очень хорош, но к месту. А используют его обычно не по назначению.

Вот скажите мне, любители Agile, можно ли пользуясь данной технологией, определить результат, который вы получите в конце разработки, стоимость и сроки? Нет? Ну и много ли дураков заказчиков таких найдете, которые ввяжутся в работу с неясным результатом, бюджетом и длительностью? Вы бы заказали ремонт квартиры бригаде, пользующейся Agile? Таким образом, Agile имеет место быть, но для проектов внутренних. Сами себе ремонт можете делать сколько угодно и несколько раз все пересматривать. Для внешних же заказчиков — это названный умным термином развод (вы, конечно, не согласитесь с такой формулировкой, но попробуйте убедить в том же клиента).

Заказчик думает: и сколько меня еще будут по кругу за нос водить?

Во-вторых, Agile хорош в инновациях, там, где не понятно, какой результат требуется получить, или не ясен путь его достижения. Называется это ОКР, опытно-конструкторскими разработками. Или даже НИОКР — научно-исследовательские и опытно-конструкторские работы. На любом заводе имеется опытный цех, где с напильником, несколько раз переделывая, получают опытные образцы. Представим, что нужно разработать заново тачскрин, все жесты и поведение. Здесь действительно следует пробовать и пробовать, заранее поведение не опишешь. Но часто ли перед вами задачи подобного толка? Следует различать инженерные разработки и научно-исследовательские. В основном мы — инженеры по конструированию информационных систем.

В-третьих, в большом проекте могут присутствовать этапы, где требуется именно ОКР, и тогда Agile в помощь. Никто не мешает на уровне оперативного планирования пользоваться спринтами. Наоборот, очень удобная технология: планировать на неделю или две и постоянно контролировать результат. На стратегическом уровне — каскадное планирование, на тактическом — итеративное. И никаких противоречий!

К сожалению, очень часто, «проповедуя» Agile, разработчики пытаются замаскировать свое неумение разработать проект системы (либо даже не знают, что это возможно). Они действуют самым удобным для них образом: будем допиливать и допиливать за деньги заказчика. Пока расходы никто не контролирует, это вполне сходит с рук. Но потом у стороннего наблюдателя (начальства) может возникнуть ощущение, что процесс-то есть, а конца и края, да и результата не видно. Пытайтесь смотреть не только со своей колокольни.

Где узнать подробнее о проектировании информационных систем?

Книжек на эту тему много. Толстых и не очень. Но книжка — это всегда ЧУЖОЙ опыт. А у вас другой характер, отличная ситуация и проект. Есть такая система ТРИЗ — теория решения изобретательских задач. Ее автор, Альтшуллер, пытается объяснить шаги, которые нужно предпринять, чтобы изобрести что-либо. Получается? Как правило, нет. Принципы излагаются интересные, полезные, но единого шаблона по изобретению не выходит. Каждый человек думает и творит по-своему, да и невозможно этому научить, можно только научиться. Чужой опыт использовать надо, глупо не использовать, но он должен быть пережит (переработан) вами, переложен на ВАШЕ мышление. Скопировать чудо не удастся.

Если вы хотите научиться проектированию, предлагаю взять за основу ГОСТы 34-й серии. Это настоящий шедевр, результат работы целых НИИ. В ходе разработки данных стандартов были изучены десятки (если не сотни) сложнейших проектов по автоматизации самых различных систем. Аккумулирован колоссальный опыт.

Эти стандарты сложно освоить, и с наскока ими пользоваться не научишься. Поэтому мы попытаемся раскрыть их суть в последующих статьях.

Источник

Оцените статью
Разные способы