Способы разработки газогидратных месторождений

Способ разработки газогидратных месторождений

Владельцы патента RU 2438009:

Изобретение относится к области разработки газогидратных месторождений углеводородов. Обеспечивает создание способа разработки газогидратных месторождений, обеспечивающего увеличение отбора газа и продление срока безгидратной эксплуатации скважин за счет снижения водонасыщенности в зоне, расположенной ниже подошвы газогидратного пласта, и, как следствие, снижение вероятности самоконсервации гидратов. Сущность изобретения: способ заключается в том, что производят бурение скважины со вскрытием продуктивного пласта и нижележащего изолированного водоносного пласта. Затем осуществляют спуск в скважину насосно-компрессорных труб с погружной насосной установкой и производят отбор газожидкостной смеси на границе газоводяного контакта продуктивного пласта. Одновременно осуществляют сепарацию газожидкостной смеси в скважине. При этом добычу газа осуществляют по затрубному пространству, а жидкости с растворенным газом — по насосно-компрессорным трубам, которую с помощью вышеупомянутой погружной насосной установки закачивают в нижележащий водоносный пласт. 1 ил., 1 табл.

Изобретение относится к области разработки газогидратных месторождений углеводородов.

Известен способ разработки газогидратного месторождения, включающий бурение эксплуатационных скважин до уровня залегания подошвы газогидратного пласта, и последующую эксплуатацию газовых скважин на депрессии, позволяющий добывать газ без образования гидратов в стволе и призабойной зоне скважины, при этом поступление газа в ствол скважины обеспечивается за счет снижения пластового давления и, соответственно, начала процесса диссоциации гидратов (Богатыренко Р.С., Особенности разработки и эксплуатации газогидратных залежей на примере Мессояхского месторождения, диссертация на соискание ученой степени кандидата технических наук, МИНХ и ГП им. И.М.Губкина).

К недостаткам способа следует отнести неизбежное снижение температуры на забое скважины вследствие как диссоциации гидратов, происходящей с поглощением большого количества тепла, так и процесса дросселирования газа в призабойной зоне пласта, дополнительно приводящего к снижению температуры. Снижение температуры в призабойной зоне приводит к началу образования вторичных гидратов, при этом фронт вторичных гидратов начинает образовываться от забоя скважины. Оба указанных фактора приводят к постепенному снижению дебита газовой скважины вплоть до прекращения добычи газа из скважины. Одновременно с сокращением добычи газа растет водонасыщенность пласта в призабойной зоне за счет диссоциации гидратов и увеличения количества свободной воды.

Читайте также:  Речевая характеристика как способ создания образа

Также известен способ добычи газа из твердых газогидратов, основанный на создании неравновесных термобарических условий путем снижения давления и подвода тепла, при этом теплоотвод осуществляется введением в зону залегания твердых газовых гидратов через скважину твердого сорбента, способного поглощать пары воды или жидкую воду с удельным тепловыделением, большим теплоты диссоциации твердых газовых гидратов, с последующим выносом сорбента потоками образующегося газа и регенерацией сорбента (RU 2159323).

Недостатком известного способа является проблема удаления твердого сорбента с забоя скважины, т.к. дебиты газовых скважин газогидратных месторождений незначительны и не обеспечивают вынос твердых частиц сорбента на поверхность. Применение компрессора для подачи сухого, очищенного метана на забой скважины для удаления сорбента делает этот способ экономически нерентабельным по следующим причинам — часть добываемого газа консервируется для циркуляции в скважине и удаления сорбента, а часть газа сжигается для обеспечения регенерации сорбента. В результате снижается общий объем добываемого газа и значительно увеличивается количество оборудования, размещаемого на каждой эксплуатационной скважине.

Из известных технических решений наиболее близким к предлагаемому по технической сути и достигаемому результату является способ разработки газогидратной залежи, заключающийся в том, что производят бурение скважины со вскрытием продуктивного пласта, осуществляют спуск в скважину насосно-компрессорных труб с погружной насосной установкой, затем производят нагнетание в скважину теплоносителя и отбор газожидкостной смеси с подъемом ее на поверхность и с последующей сепарацией (WO 2007/072172).

Недостатками указанного решения являются большие энергетические затраты на нагрев теплоносителя и необходимость подъема пластовой воды на устье. Поскольку практически все газогидратные месторождения расположены в зоне многолетнемерзлых пород либо в шельфовой части морей и океанов, т.е. в зонах в низкой температурой, разделение газа и жидкости в скважине и последующая подача жидкости на поверхность связана с необходимостью обеспечения ее фазового состояния и принятием мер для предотвращения ее замерзания.

При этом неравновесные термобарические условия создаются исключительно за счет нагнетания в скважину теплоносителя, закачка которого приводит к смещению условия равновесия, при этом уменьшения водонасыщенности в призабойной зоне не происходит, так как теплоноситель нагнетается постоянно. Указанное приводит к снижению отбора газа.

Задачей изобретения является создание способа разработки газогидратных месторождений, обеспечивающего увеличение отбора газа и продление срока безгидратной эксплуатации скважин за счет снижения водонасыщенности в зоне, расположенной ниже подошвы газогидратного пласта, и, как следствие, снижение вероятности самоконсервации гидратов, а также сокращение энергозатрат за счет исключения подъема пластовой воды на поверхность и использования теплононосителя.

Поставленная задача достигается тем, что в способе разработки газогидратной залежи производят бурение скважины со вскрытием продуктивного пласта и нижележащего изолированного водоносного пласта, затем осуществляют спуск в скважину насосно-компрессорных труб с погружной насосной установкой и производят отбор газожидкостной смеси на границе газоводяного контакта продуктивного пласта с одновременной сепарацией газожидкостной смеси в скважине, причем добычу газа осуществляют по затрубному пространству скважины, а жидкости с растворенным газом — по насосно-компрессорным трубам, которую с помощью вышеупомянутой погружной насосной установки закачивают в нижележащий изолированный водоносный пласт.

Сущность изобретения поясняется чертежом, на котором показана принципиальная схема установки для реализации предлагаемого способа.

Способ осуществляют следующим образом.

Производят бурение скважины 1 со вскрытием нижележащего изолированного водоносного пласта 2.

В пробуренной скважине 1 осуществляют перфорацию 3 в зоне водоносного пласта 2 и в зоне контакта газ-вода 4 продуктивного пласта 5. На насосно-компрессорных трубах 6 опускают насосную установку 7 с погружным электродвигателем 8 ниже динамического уровня 9. Устанавливают пакер 10 между продуктивным пластом 5 и изолированным водоносным пластом 2. Связь погружного электродвигателя 8 со станцией управления 11 осуществляют с помощью внутрискважинного кабеля 12 и поверхностного кабеля 13. Управление работой погружного электродвигателя 8 осуществляют с помощью трансформатора 14 и частотного преобразователя 15.

Посредством насосной установки 7 производят отбор газожидкостной смеси. В результате отбора газожидкостной смеси пластовое давление в газогидратном пласте 5 снижается. Начинается процесс диссоциации гидрата и поступления газа в газонасыщенную часть пласта. Одновременно, в результате отбора воды, происходит снижение водонасыщенности в зоне, расположенной ниже подошвы газогидратного пласта 5. С изменением газонасыщенности меняются также фазовые проницаемости для газа и воды. Фазовая проницаемость для газа увеличивается с ростом газонасыщенности, что обеспечивает поступление газа в скважину.

Разделение газожидкостной смеси происходит в скважине 1 и осуществляется посредством газосепаратора, входящего в состав погружной насосной установки 7. Далее газ по затрубью скважины поступает на поверхность в шлейф 16 и далее на установку подготовки газа и к потребителю, а воду после разделения газожидкостной смеси с помощью погружной насосной установки 7 закачивают в нижележащий изолированный водоносный пласт 2.

Таким образом, в предлагаемом способе обеспечивается создание неравновесных термобарических условий за счет снижения давления на забое скважины в процессе отбора газожидкостной смеси с помощью насосной установки 7.

Вероятность самоконсервации гидратов при реализации способа значительно снижается, т.к. уменьшается количество воды, участвующей в процессе вторичного гидратообразования. Не происходит и снижения температуры газа на забое эксплуатационной скважины, поскольку добывается газожидкостная смесь, а не чистый газ и дроссель-эффект не проявляется.

Ниже приведен пример конкретной реализации предлагаемого способа.

Пример представлен для случая эксплуатации скважин Мессояхского газогидратного месторождения. Определим равновесные термобарические условия существования гидратов Мессояхского месторождения. Состав газа Мессояхского месторождения в основном представлен метаном ((98-99 об.%). Поэтому для дальнейших расчетов можно принять, что условия диссоциации гидратов Мессояхского месторождения соответствуют условиям диссоциации чистого метана и составляют при пластовой температуре 10,5°С величину 6,8 МПа. Следовательно, при давлении ниже 6,8 МПа происходит диссоциация существующих гидратов.

Начальное пластовое давление и температура Мессояхского месторождения составляют соответственно 7,5 МПа и 10,5°С. Для начала диссоциации гидратов нужно снизить давление в подошве газогидратной области месторождения на величину 0,7 МПа.

Фильтрационно-емкостные свойства пласта следующие — проницаемость k=93,1 мД; пористость m=25%. Принимая, что в водоносной части пласта фильтрационно-емкостные параметры остаются теми же, можно рассчитать отбор пластовой воды, при котором начнется снижение давления в области пласта, расположенной ниже газогидратов.

В соответствии с предлагаемой технологией осуществляют бурение скважины 1 со вскрытием нижележащего изолированного водоносного пласта 2. Эксплуатационные скважины Мессояхского месторождения имеют следующую конструкцию:

— Кондуктор ⌀ 219 мм — до глубины 450,0-500,0 м;

— Эксплуатационная колонна ⌀ 146 мм — до глубины 870,0-900,0 м, т.е. практически до забоя;

— Лифтовая колонна — НКТ d=73 мм.

Газоводяной контакт 4 устанавливается по данным геозифизических исследований. На расстоянии 10 метров ниже газоводяного контакта производится перфорация 3 и устанавливается насосная установка 7 с погружным электродвигателем 8. Наиболее подходящий типоразмер установки погружного центробежного насоса для рассматриваемого примера — УЭЦН5А-360-600.

Коэффициент продуктивности скважины при принятых допущениях составит — 50,18 т/(сут·МПа) (расчет производился для следующих условий — плотность пластовой воды — 1043 кг/м 3 ; толщина пласта 10 м; радиус контура питания — 300 м; приведенный радиус скважины — 0,2 м; вязкость пластовой воды — 1,08 мПа·с). Дебит пластовой жидкости, рассчитанный по формуле Дюпюи, составляет 351,26 т/сутки.

Диаметр НКТ эксплуатационных скважин способен обеспечить рассчитанный дебит по жидкости.

Пакер 10 устанавливают между продуктивным пластом 5 и изолированным водоносным пластом 2. При закачке пластовой жидкости в пласт осуществляют следующую компоновку подземного оборудования: эксплуатационный пакер типа 2 ПД-ЯГ-118-500 с наружным диаметром 118 мм, для скважин с эксплуатационнной колонной диаметром 139.7 мм — пакер типа АПД-ЯГ-112-500.

Связь погружного электродвигателя 8 со станцией управления 11 осуществляют с помощью внутрискважинного кабеля 12 и поверхностного кабеля 13. Управление работой погружного электродвигателя осуществляют с помощью трансформатора 14 и частотного преобразователя 15.

В результате работы насоса и отбора газожидкостной смеси пластовое давление в подошве газогидратного пласта 5 снижается.

Распределение давления в области дренирования определим для случая плоскорадиальной фильтрации при забойном давлении 5,0 МПа и пластовом давлении 7,5 МПа; радиус контура питания — 300 метров, приведенный радиус скважины — 0,2 м.

Результаты расчетов приведены в таблице.

Расстояние r, м 1 5 10 15 20 25 35 50 150 300
Давление на расстоянии r, МПа 5,55 6,1 6,34 6,48 6,58 6,65 6,77 6,89 7,26 7,50

Результаты расчетов показывают, что пластовое давление в области дренирования на расстоянии до 50 метров ниже давления начала диссоциации гидратов.

Одновременно, в результате отбора воды, происходит снижение водонасыщенности в зоне, расположенной ниже подошвы газогидратного пласта.

Разделение газожидкостной смеси происходит в скважине 1. Далее газ по затрубью поступает на поверхность в шлейф 16, где производят его подготовку, а вода закачивается в нижележащий водоносный пласт 2.

При диссоциации гидратов образуется 160 м 3 газа и 1 м 3 воды. Для рассматриваемой конструкции скважины при поступлении воды динамический уровень изменяется на 59 метров на каждый кубометр поступившей в скважину воды. При достижении водой определенного уровня происходит самозадавливание скважин пластовой водой и выбытие скважин из эксплуатации. Производительность выбранного насоса позволяет постоянно удалять воду из скважины и поддерживать давление в призабойной зоне пласта, обеспечивающего диссоциацию гидратов. При этих условиях поступление газа в скважину будет происходить постоянно без риска образования вторичных гидратов до величины газонасыщенности в пласте 5-10%, когда фазовая проницаемость для газа будет равна нулю. Общий отбор газа из газогидратного пласта составит при этом 90-95%.

При использовании известной технологии при разработке Мессояхского газогидратного месторождения коэффициент извлечения газа составил лишь 60%, после чего месторождение из-за обводнения скважин было переведено в режим консервации.

Способ разработки газогидратной залежи, заключающийся в том, что производят бурение скважины со вскрытием продуктивного пласта и нижележащего изолированного водоносного пласта, затем осуществляют спуск в скважину насосно-компрессорных труб с погружной насосной установкой и производят отбор газожидкостной смеси на границе газоводяного контакта продуктивного пласта с одновременной сепарацией газожидкостной смеси в скважине, причем добычу газа осуществляют по затрубному пространству, а жидкости с растворенным газом по насосно-компрессорным трубам, которую с помощью вышеупомянутой погружной насосной установки закачивают в нижележащий водоносный пласт.

Источник

Месторождения газовых гидратов: ресурсы и возможные методы разработки

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина

Газогидратные месторождения обладают наибольшим потенциалом по сравнению с другими нетрадиционными источниками газа. Сегодня себестоимость газа, добытого из гидратов, несопоставима с аналогичным показателем добычи газа из традиционных газовых месторождений. Однако вполне обоснованно полагать, что в ближайшей перспективе прогресс технологий газодобычи сможет обеспечить экономическую целесообразность разработки месторождений газовых гидратов. На основе анализа геологических условий залегания типовых газогидратных залежей и результатов численного моделирования автором выполнена оценка перспективности добычи газа из гидратов.

Газовые гидраты представляют собой твердые соединения молекул газа и воды, существующие при определенных давлениях и температурах. В одном кубометре природного гидрата содержится до 180 м3 газа и 0,78 м3 воды. Если раньше гидраты изучались с позиции технологических осложнений при добыче и транспорте природного газа, то с момента обнаружения залежей природных газовых гидратов их стали рассматривать как наиболее перспективный источник энергии. В настоящий момент известно более двухсот месторождений газовых гидратов, большая часть которых расположена на морском дне. По последним оценкам, в залежах природных газовых гидратов сосредоточено 10-1000 трлн м3 метана [1], что соизмеримо с запасами традиционного газа. Поэтому стремление многих стран (особенно стран-импортеров газа: США, Японии, Китая, Тайваня) освоить этот ресурс вполне объяснимо. Но, несмотря на последние успехи геологоразведочного бурения и экспериментальных исследований гидратов в пористых средах, вопрос об экономически рентабельном способе добычи газа из гидратов остается по-прежнему открытым и требует дальнейшего изучения.

Самое первое упоминание о больших скоплениях газовых гидратов связано с Мессояхским месторождением, открытым в 1972 г. в Западной Сибири. Вопросами анализа разработки этого месторождения занимались многие исследователи, опубликовано более ста научных статей. Согласно работе [2] в верхней части продуктивного разреза Мессояхского месторождения предполагается существование природных гидратов. Однако следует отметить, что прямые исследования гидратоносности месторождения (отбор керна) не проводились, а те признаки, по которым выявлены гидраты, носят косвенный характер и допускают различную трактовку [3].

Поэтому к настоящему моменту нет единого мнения о гидратоносности Мессояхского месторождения.

В этом отношении наиболее показательным является пример другого предполагаемого гидратоносного района — северного склона Аляски (США). Долгое время считалось, что данный район имеет значительные запасы газа в гидратном состоянии. Так, утверждалось [4], что в районе нефтяных месторождений Прудо Бей и Кипарук Ривер имеется шесть гидратонасыщенных пластов с запасами 1,0-1,2 трлн м3. Предположение о гидратоносности строилось на результатах опробования скважин в вероятном интервале залегания гидратов (эти интервалы характеризовались крайне низкими дебитами газа) и интерпретации геофизических материалов.

С целью изучения условий залегания гидратов на Аляске и оценки их ресурсов в конце 2002 г. компания «Анадарко» (Anadarko) совместно с Департаментом энергетики США организовала бурение разведочной скважины Хот Айс № 1 (HOT ICE #1). В начале 2004 г. скважина была закончена на проектной глубине 792 м. Тем не менее, несмотря на ряд косвенных признаков наличия гидратов (данные геофизических исследований и сейсморазведки), а также на благоприятные термобарические условия, гидратов в поднятых кернах обнаружено не было [5]. Это еще раз подтверждает тезис о том, что единственным надежным способом обнаружения гидратных залежей является разведочное бурение с отбором керна.

На данный момент подтверждена гидратоносность лишь двух месторождений природных гидратов, представляющих наибольший интерес с точки зрения промышленного освоения: Маллик — в дельте реки Макензи на северо-западе Канады [6], и Нанкай — на шельфе Японии.

Существование природных гидратов подтверждено бурением исследовательской скважины в 1998 г. и трех скважин в 2002 г. На этом месторождении успешно проведены промысловые эксперименты по добыче газа из гидратонасыщенных интервалов. Есть все основания полагать, что оно является характерным типом континентальных гидратных месторождений, которые будут открыты в дальнейшем.

На основе геофизических исследований и изучении кернового материала выявлены три гидратосодержащих пласта (A, B, C) общей мощностью 130 м в интервале 890-1108 м. Зона вечной мерзлоты имеет мощность порядка 610 м, а зона стабильности гидрата (ЗСГ) (т.е. интервал, где термобарические условия соответствуют условиям стабильности гидратов) простирается от 225 до 1100 м. Зона стабильности гидратов определяется по точкам пересечения равновесной кривой образования гидрата пластового газа и кривой изменения температуры разреза (см. рис. 1). Верхняя точка пересечения является верхней границей ЗСГ, а нижняя точка — соответственно нижней границей ЗСГ. Равновесная температура, соответствующая нижней границе зоны стабильности гидратов, составляет 12,2°С [6].

Пласт А находится в интервале от 892 до 930 м, где отдельно выделяется гидратонасыщенный пропласток песчаника (907-930 м). По данным геофизики, насыщенность гидратом варьирует от 50 до 85%, остальное поровое пространство занято водой. Пористость составляет 32-38%. Верхняя часть пласта А состоит из песчаного алеврита и тонких прослоев песчаника с гидратонасыщенностью 40-75%. Визуальный осмотр поднятых на поверхность кернов выявил, что гидрат в основном занимает межзеренное поровое пространство. Данный интервал является самым холодным: разница между равновесной температурой гидратообразования и пластовой температурой превышает 4°С.

Гидратный пласт В (942-992 м) состоит из нескольких песчаных пропластков толщиной 5-10 м, разделенных тонкими прослоями (0,5-1 м) свободных от гидратов глин. Насыщенность гидратами варьирует в широких пределах от 40 до 80%. Пористость изменяется от 30 до 40%. Широкий предел изменения пористости и гидратонасыщенности объясняется слоистым строением пласта. Гидратный пласт В подстилается водоносным пропластком мощностью 10 м.

Пласт С (1070-1107 м) состоит из двух пропластков с насыщенностью гидратами в пределах 80-90% и находится в условиях, близких к равновесным. Подошва пласта С совпадает с нижней границей зоны стабильности гидратов. Пористость интервала составляет 30-40%.

Ниже зоны стабильности гидратов отмечается переходная зона газ-вода мощностью 1,4 м. После переходной зоны следует водоносный пласт мощностью 15 м.

По результатам лабораторных исследований установлено, что гидрат состоит из метана (98% и более). Изучение кернового материала показало, что пористая среда в отсутствии гидратов имеет высокую проницаемость (от 100 до 1000 мД), а при насыщении гидратами на 80% проницаемость породы падает до 0,01-0,1 мД.

Плотность запасов газа в гидратах около пробуренных разведочных скважин составила 4,15 млрд. м3 на 1 км2, а запасы в целом по месторождению — 110 млрд. м3 [6].

На шельфе Японии уже на протяжении нескольких лет ведутся активные разведочные работы. Первые шесть скважин, пробуренных в период с 1999-2000 гг, доказали наличие трех гидратных пропластков общей мощностью 16 м в интервале 1135-1213 м от поверхности моря (290 м ниже морского дна). Породы представлены в основном песчаниками с пористостью 36% и насыщенностью гидратами порядка 80% [7].

В 2004 г. были пробурены уже 32 скважины при глубинах моря от 720 до 2033 м [8]. Отдельно следует отметить успешное заканчивание в слабоустойчивых гидратных пластах вертикальной и горизонтальной (с длиной горизонтального ствола 100 м) скважин при глубине моря 991 м [9]. Следующим этапом освоения месторождения Нанкай станет экспериментальная добыча газа из этих скважин в 2007 г. К промышленной разработке месторождения Нанкай намечается приступить в 2017 г.

Суммарный объем гидратов эквивалентен 756 млн м3 газа на 1 км2 площади в районе пробуренных разведочных скважин. В целом по шельфу Японского моря запасы газа в гидратах могут составлять от 4 трлн до 20 трлн м3 [7].

Гидратные месторождения в России

Основные направления поиска газовых гидратов в России сейчас сосредоточены в Охотском море и на озере Байкал [10]. Однако наибольшие перспективы обнаружения залежей гидратов с промышленными запасами связаны с Восточно-Мессояхским месторождением в Западной Сибири [11]. На основе анализа геолого-геофизической информации сделано предположение о том, что газсалинская пачка находится в благоприятных для гидратообразования условиях. В частности, нижняя граница зоны стабильности газогидратов находится на глубине приблизительно 715 м, т.е. верхняя часть газсалинской пачки (а в некоторых районах и вся пачка) находится в термобарических условиях, благоприятных для существования газогидратов. Опробование скважин результатов не дало, хотя по каротажу данный интервал характеризуется как продуктивный, что можно объяснить снижением проницаемости пород из-за наличия газовых гидратов. В пользу возможного существования гидратов говорит и тот факт, что газсалинская пачка является продуктивной на других рядом расположенных месторождениях. Поэтому, как отмечалось выше, необходимо бурение разведочной скважины с отбором керна. В случае положительных результатов будет открыта газогидратная залежь с запасами

Анализ возможных технологий разработки газогидратных залежей

Выбор технологии разработки газогидратных залежей зависит от конкретных геолого-физических условий залегания. Сейчас рассматриваются только три основных метода вызова притока газа из гидратного пласта: понижение давления ниже равновесного давления, нагрев гидратосодержащих пород выше равновесной температуры, а также их комбинация (см. рис. 2). Известный метод разложения гидратов с помощью ингибиторов вряд ли окажется приемлемым вследствие высокой стоимости ингибиторов. Другие предлагаемые методы воздействия, в частности электромагнитное, акустическое и закачка углекислого газа в пласт, пока еще мало изучены экспериментально.

Рассмотрим перспективность добычи газа из гидратов на примере задачи притока газа к вертикальной скважине, полностью вскрывшей гидратонасыщенный пласт. Тогда система уравнений, описывающих разложение гидрата в пористой среде, будет иметь вид:

а) закон сохранения массы для газа и воды:

где P — давление, T — температура, S — водонасыщенность, v — гидратонасыщенность, z — коэффициент сверхсжимаемости; r — радиальная координата; t — время; m — пористость, g, w, h — плотности газа, воды и гидрата соотвественно; k(v) — проницаемость пористой среды в присутствии гидратов; fg(S), fw(S) — функции относительных фазовых проницаемостей для газа и воды; g, w — вязкости газа и воды; — массовое содержание газа в гидрате;

б) уравнение сохранения энергии:

где Сe — теплоемкость породы и вмещающих флюидов; cg, cw — теплоемкость газа и воды соответственно; H — теплота фазового перехода гидрата; — дифференциальный адиабатический коэффициент; — коэффициент дросселирования (коэффициент Джоуля-Томсона); e — коэффициент теплопроводности породы и вмещающих флюидов.

В каждой точке пласта должно выполняться условие термодинамического равновесия:

Источник

Оцените статью
Разные способы