Способы раздражения возбудимых тканей

Кафедра физиологии

Разделы сайта

Новости

Общие представления о физиологии возбудимых тканей

Общие представления о физиологии возбудимых тканей

Биологическая реакция – ответная реакция клеток, тканей, органов в ответ на раздражитель (стимул).
Раздражимость – свойство всех живых тканей изменять своё внутреннее состояние при изменении внешних условий.
Виды тканей в зависимости от реагирования на внешние раздражители:
I Возбудимые — обладают свойством возбудимости, т.е. способностью возбуждаться нервная, мышечная, железистая.
II Невозбудимые – изменяют свое состояние, но не генерируют процесс возбуждения в ответ на нанесенный стимул.
Возбудимость – способность ткани переходить в возбуждённое состояние.
Возбуждение – деятельное состояние тканей в ответ на действие раздражителя, это сложная биологическая реакция, проявляющаяся в совокупности физических, физико-химических и функциональных изменений, способная к распространению по ткани.
Возбуждение включает в себя неспецифические и специфические компоненты.
Неспецифические:
сдвиг химических реакций, образование тепла, физико-химические изменения,
продукция биопотенциалов, структурные изменения в мембране клеток.
Специфические:
мышечная ткань отвечает мышечным сокращением, нервная ткань — генерацией нервного импульса и его проведением, железистая ткань – образованием и выделением секрета.
Возбуждение может быть локальным и динамическим (распространяющимся).
Биопотенциалы
Луиджи Гальвани 1791 г. в эксперименте показал, что живые ткани содержат «животное электричество», его научный оппонент, физик Вольта — что это электричество от разнородных металлов, он создал первый источник постоянного тока, который носит название гальванический элемент.
Виды биопотенциалов:
1. Биопотенциал покоя (мембранный) — МПП.
2. Биопотенциал действия (возбуждения) — ПД.

  • Биопотенциал покоя – это разность потенциалов между наружной и внутренней поверхностью мембраны клетки в покое. Наружная поверхность мембраны клетки имеет положительный заряд, а внутренняя – отрицательный.

Биопотенциал покоя регистрируется внутриклеточным методом – с помощью микроэлектродов, один из которых вводится внутрь клетки (рис.1).


Рисунок 1. Схематическое представление метода регистрации биопотенциалов.

В эксперименте биопотенциал покоя можно зарегистрировать между повреждённым и неповреждённым участком ткани. Повреждённый участок является моделью внутренней поверхности мембраны клетки.
При внутриклеточном отведении перезарядка мембраны регистрируется под одним электродом (однофазный ПД), при внеклеточном отведении потенциал действия проходит через два электрода (регистрируется двухфазный ПД).

  • Биопотенциал действия – это кратковременные высокоамплитудные изменения МПП, которые возникают при возбуждении. ПД регистрируется в раздражаемых тканях, в которых возникает волна возбуждения (рис.2). Измеряется ПД с помощью внутриклеточного отведения и внеклеточного отведения.

Рисунок 2. Потенциал действия, основные его фазы.

Современная, экспериментально доказанная, мембранно-ионная теория возникновения биопотенциалов (Ходжкин, Хаксли, Катц).

Основные положения:

  • Электрические процессы возникают на плазматической мембране клетки, которая состоит из бимолекулярного слоя липидов (остов мембраны) и белков, которые выполняют различные функции в мембране: рецепторную, ферментативную, образуют в ней каналы и насосы (рис.3).

Канал мембраны может быть неспецифическим, он постоянно открыт, не имеет воротного механизма, электрические воздействия не изменяют его состояния. Называют каналом «утечки». Специфические каналы (селективные) имеют воротный механизм, поэтому могут находиться или в открытом, или в закрытом состоянии в зависимости от электрических воздействий на мембрану и пропускают только определенный ион. Этот канал состоит из трех частей: водной поры – выстлана внутри гидрофильными группами; селективного фильтра – на наружной поверхности, который пропускает ионы в зависимости от их размера и формы; ворот – на внутренней поверхности мембраны, управляют проницаемостью канала.

Рисунок 3. Строение биологической мембраны.

Читайте также:  Способ возведения здания это

Канал мембраны может быть неспецифическим, он постоянно открыт, не имеет воротного механизма, электрические воздействия не изменяют его состояния. Называют каналом «утечки». Специфические каналы (селективные) имеют воротный механизм, поэтому могут находиться или в открытом, или в закрытом состоянии в зависимости от электрических воздействий на мембрану и пропускают только определенный ион. Этот канал состоит из трех частей: водной поры – выстлана внутри гидрофильными группами; селективного фильтра – на наружной поверхности, который пропускает ионы в зависимости от их размера и формы; ворот – на внутренней поверхности мембраны, управляют проницаемостью канала (рис.4).

Рисунок 4. Строение ионного канала.

Каналы для натрия имеют два типа ворот: быстрые активационные и медленные инактивационные. В покое открыты медленные инактивационные и закрыты быстрые активационные. При возбуждении происходит открытие быстрых активационных и медленное закрытие медленных инактивационных, т.е. на короткий промежуток времени оба типа ворот открыты (рис.5).

Рисунок 5. Работа активационные и инактивационный воротных механизмов натриевого ионного канала.

Калиевые каналы имеют только медленные ворота.
Насосы выполняют функцию транспорта через мембрану ионов против градиента концентрации, для их работы используется энергия АТФ.

  • По обе стороны мембраны существует концентрационный градиент.

Внутри клетки в 40 раз > К+; t;/p>

Вне клетки: в 20-30 раз > Na+,
в 50 раз > Cl-.

  • Мембрана пропускает молекулы жирорастворимых веществ, а анионы органических кислот не проходят. Мембрана проницаема для воды, для ионов проницаемость мембраны различна: для калия в состоянии покоя проницаемость почти в 25 раз больше, чем для натрия. При возбуждении увеличивается проницаемость и для калия (постепенно), и для натрия (быстро, но на очень короткий промежуток времени).

Потенциал покоя
Проницаемость мембраны для ионов К+ повышена, поэтому калий играет основную роль в генерации МПП. Калий создаёт электрическое поле и заряжает наружную поверхность мембраны «+». В тот момент, когда «+» потенциал наружной стороны достигает определённой величины по отношению к «–» внутри, который создается анионами – наступает динамическое равновесие между входящими и выходящими из клетки ионами К+. Этому моменту соответствует потенциал равновесия для К — потенциал покоя.

МПП характеризуется:
1. постоянством;
2. полярностью, снаружи «+», внутри «-»;
3. величина – в мВ, для скелетной мышцы — 60 – 90 мВ,
для гладкой — -30 – 70 мВ,
для нерва -50 – 80мВ,
для секреторной клетки — -20мВ.

МПП — один из основных показателей состояния физиологического покоя клетки. При увеличении внеклеточной концентрации калия уменьшается МПП, т.к. уменьшается диффузия калия из клетки в связи со снижением его концентрационного градиента. При действии веществ, блокирующих ресинтез АТФ, т.к. прекращается работа натрий-калиевого насоса, также снижается МПП. Ионы натрия и хлора входят в клетку, но ввиду низкой проницаемости значительного влияния на МП не оказывают.

Потенциал действия
При возбуждении – резко увеличивается (в несколько тысяч раз) проницаемость для ионов Na, которые поступают внутрь клетки лавинообразно и заряжают внутреннюю сторону «+» — происходит деполяризация мембраны, а затем количество ионов натрия внутри превышает калиевый заряд на поверхности и это приводит к перезарядке мембраны (реверсии). Постепенно увеличивающаяся проницаемость для калия и его поток из клетки инактивирует натриевую проницаемость и приводит к восстановлению заряда на мембране. Возникает фаза реполяризации.
Существенным фактором является натрий-калиевый насос, который выводит из клетки 3 иона натрия в обмен на 2 иона калия, вводимые в клетку. Его работа зависит от метаболизма клетки, в частности, от ее энергоснабжения. При этом расходуется 1 молекула АТФ (рис.6).

Читайте также:  Вязание спицами следков разными способами вязание спицами следков разными способами

Рисунок 6. Механизм работы натрий-калиевого насоса.

ПД состоит из пикового потенциала, который образуется фазой деполяризации, реверсии и реполяризации, и следовых потенциалов (рис.2).
Следовые потенциалы:
Отрицательный (следовая деполяризация);
Положительный (следовая гиперполяризация).

Причиной следовых потенциалов являются дальнейшие изменения соотношения между входом натрия в клетку и выходом калия из нее. При следовой деполяризации отмечается остаточный ток натрия в клетку при одновременном снижении калиевого тока. При следовой гиперполяризации – остаточное усиление тока калия из клетки при одновременной активации натрий-калиевого насоса.

ПД характеризуется:
1. изменяющимся характером;
2. кратковременностью – несколько мсек;
3. зарядом мембраны, снаружи – «-», внутри – «+».
При действии веществ, блокирующих натриевые каналы, ПД не генерируется, т.к. в норме деполяризация мембраны обусловлена повышение ее натриевой проницаемости. При увеличении силы раздражителя выше порога амплитуда ПД не изменяется, т.к. не изменяется число активированных натриевых каналов, которые максимально раскрываются при пороговом раздражении.

Условия, необходимые для возникновения возбуждения (законы раздражения).

Возбудимость тканей различна. Чтобы вызвать возбуждение, раздражитель должен обладать:
1. Достаточной силой – закон порога.
2. Крутизной (градиентом) нарастания этой силы – закон аккомодации.
3. Временем действия – закон силы-времени.

1. Закон силы. Мерой возбудимости является порог раздражения – минимальная сила раздражителя, способная вызвать возбуждение. Все раздражители можно разделить на подпороговые, пороговые и сверхпороговые. По биологическому значению раздражители делят на адекватные (действующие на ткань в естественных условиях, к ним она приспособлена в процессе эволюции) и неадекватные. В физиологических экспериментах в качестве раздражителя чаще всего используется электрический ток, т.к. он вызывает обратимые изменения, легко дозируется по силе и длительности, по своей природе близок к электрическим процессам, протекающим в живых организмах.
В 1870 г. Боудич в эксперименте на мышце сердца путем нанесения на неё одиночных пороговых раздражений регистрировал ответную реакцию — установил, что на подпороговое раздражение реакции не было, при пороговой силе и сверхпороговой амплитуда ответной реакции была одинаковой. На основании этого он предложил закон «Всё или ничего».
После введения в экспериментальные исследования микроэлектронной техники было установлено, что на подпороговое раздражение в ткани возникает ответная реакция. Если сила стимула меньше 50% пороговой величины, то под полюсами электродов происходит пассивная деполяризация без изменения проницаемости мембраны для ионов (электротонические изменения). Если сила стимула меньше пороговой величины, но больше 50% от нее, то в ткани возникает локальный ответ, который сопровождается деполяризацией мембраны в области нанесения раздражения и не распространяется на всю ткань, возбудимость тканей в этом участке повышена. Локальный ответ подчиняется закону силовых отношений, т.е. чем больше сила подпорогового стимула, тем больше амплитуда локального ответа. Проницаемость мембраны клетки в этом участке повышается для ионов натрия. При нанесении порогового стимула возникает ПД, амплитуда которого не изменяется, если величина стимула будет превышать пороговую, т.е. отвечает закону «Все или ничего», но на сверхпороговые стимулы длительность ПД будет меньше за счет укорочения продолжительности локального ответа.
Момент перехода локального ответа в ПД называется критическим уровнем деполяризации (КУД), а сдвиг заряда мембраны с мембранного потенциала до КУД, называется пороговым потенциалом, он наряду с порогом раздражения характеризует возбудимость ткани.

Читайте также:  Основные способы переработки рыбы

Изменение возбудимости тканей при возбуждении.

При возбуждении возбудимость тканей претерпевает определенные изменения в зависимости от фаз ПД (рис.7):
I – супернормальная возбудимость (первичная) соответствует локальному ответу, при этом два подпороговых стимула, нанесенных с интервалом времени, короче длительности локального ответа могут суммироваться и вызывать ПД;
II – абсолютная рефрактерность – соответствует регенеративной деполяризации и реверсии, при этом ткань становится абсолютно невозбудимой и не отвечает на самые сильные раздражители;
III – относительная рефрактерная фаза, соответствует реполяризации, при этом возбудимость ткани постепенно восстанавливается и сверхпороговый стимул, нанесенный в этот период может генерировать ПД;
IV – супернормальная возбудимость (вторичная или экзальфационная фаза) — следовой деполяризации, ткань становится более возбудимой, чем в исходном состоянии и даже подпороговый стимул способен вызвать ПД;
V – субнормальная возбудимость – следовой гиперполяризации, возбудимость ткани несколько снижена.

Рисунок 7. Изменение возбудимости мембраны при развитии потенциала действия.

2. Закон градиента раздражения (Дюбуа Реймон). Чем больше градиент раздражения, тем больше (до известных пределов) реакция живого образования.
За время действия медленно нарастающего стимула наступает приспособление ткани – аккомодация. Она связана с тем, что при возбуждении проницаемость для ионов натрия увеличивается на короткий промежуток времени, если в течение его раздражитель не достигает пороговой величины, то увеличивающаяся проницаемость для ионов калия инактивирует натриевую проницаемость и возбуждение не наступает. При этом происходит также сдвиг КУД с увеличением порогового потенциала.

3. Закон силы-времени (Лапик). Пороговая величина любого раздражителя находится в обратной зависимости от времени его действия, которая характеризуется математической кривой – гиперболой. Характер кривой свидетельствует о том, что подпороговые стимулы (меньше 1 реобазы) не вызовут возбуждение как долго бы они не действовали, в то же время очень сильный кратковременный стимул, длительность которого меньше полезного времени, также не вызовет возбуждение.
Сила постоянного тока, которая, действуя неопределенное время, вызывает возбуждение, называется реобазой.
Время, в течение которого ток в 1 реобазу вызывает возбуждение – полезное время.
Минимальное время, в течение которого ток силой в 2 реобазы вызовет возбуждение, называется хронаксией. Исследование этого показателя используется в неврологической и травматологической практике для изучения динамики восстановления в нервной или мышечной ткани после травмы.

Список использованной литературы

  • Нормальна фізіологія /Під ред. В.І. Філімонова. – К. – Здоров’я, 1994. – С. 5 — 37.
  • Физиология человека /Под ред. Г. И. Косицкого. – М., Медицина, 1985. – С. 19 – 84.
  • Посібник з нормальної фізіології /Під ред. В.Г. Шевчука. – К., Здоров’я, 1995. – С. 6 — 36.
  • Руководство к практическим занятиям по физиологии /Под ред. Г. И. Косицкого. – М., Медицина, 1988. – С. 72 — 94.
  • Нормальная физиология /Под ред. В. И. Филимонова. — Запорожье, 1995. – С. 74-72.
  • Физиология человека. Т.1 /Под ред. Р. Шмидта и Г. Тевса. – М., Мир, — 1996. — С. 9-87.
  • Физиология человека. Т.1 / Под ред. В.М. Покровского. – М., Медицина, 1998. – С. 27-97.
  • Общий курс физиологии человека и животных. Т.1. /Под ред. А.Д. Ноздрачева – М., Высшая школа, 1991.- С.36-116.
  • Физиология человека. /Под ред. В.М. Смирнова – М., Медицина, 2002. – С. 45-61, 82-94.
  • Фізіологія людини. Вільям Ф. Ганонг. – БаК, Львів, 2002. – С. 6 – 69, 74-76.

Источник

Оцените статью
Разные способы