- ДЕТАЛЬНАЯ РАЗБИВКА КРУГОВЫХ КРИВЫХ
- Разбивка кривых на местности.
- Оставьте свой комментарий
- Оставить комментарий от имени гостя
- Комментарии
- Закрепленные
- Понравившиеся
- Последние материалы
- Заключение (Грунты)
- Представления о решении задач нелинейной механики грунтов
- Прочность грунтов при сложном напряженном состоянии
- Основные закономерности татического деформирования грунтов
- Упругопластическое деформирование среды и поверхности нагружения
- Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний
- Инварианты напряженного и деформированного состояний грунтовой среды
- О коэффициентах устойчивости и сопоставление с результатами опытов
- Давление грунта на сооружения
- Несущая способность оснований
- Процесс отрыва сооружений от оснований
- Решения плоской и пространственной задач консолидации и их приложения
- Способы детальной разбивки закруглений
ДЕТАЛЬНАЯ РАЗБИВКА КРУГОВЫХ КРИВЫХ
Детальная разбивка кривой предусматривает не только закреп-ление на местности начала НК, конца КК и середины СК кривой, но и обозначение всей кривой, например, колышками через определен-ный интервал. Существует ряд способов разбивки круговых кривых: способ прямоугольных координат, способ углов, способ продолжен-ных хорд.
Способ прямоугольных координат (ординат от тангенса).
|
|
|
|
|
|
|
В эти формулы подставляют значение угла j1, зависящее от величины интервала К, которое можно найти из выражения:
j1= .
На местности откладывают от начала кривой НК по направ-лению на вершину угла поворота ВУ (по направлению тангенса) абсциссы Хi , а по перпендикулярному направлению ординаты Уi и закрепляют точки 1, 2, 3 и т.д. Так производят разбивку до середины кривой. Другую половину кривой разбивают с ее конца. Для определения координат Х и У существуют специальные таблицы.
Этот способ применяется на ровной площадке и является наиболее точным, так как точки 1, 2, 3 и т.д. выносят независимо друг от друга, поэтому ошибка положения одной точки не окажет влияния на положение других точек, чего нельзя сказать о рассмат-риваемых далее способах углов и продолженных хорд .
Способ углов (полярный способ).
|
|
|
|
|
Этот способ удобно применять в стесненных условиях, когда есть видимость между НК и точками 1, 2, 3. (например, на высокой насыпи, где способ прямоугольных координат неприемлем).
|
|
|
|
|
|
Способ продолженных хорд
|
Вначале по координатам Х1 и У1 выносят точку 1. Затем в створе НК-1 на расстоянии S от точки 1 отмечают вспомогательную точку 2’, от которой откладывают так называемое промежуточное
|
|
|
|
Этим способом одну половину кривой разбивают с HK, а дру-гую половину — с конца кривой КК. Способ применим в любыхстес-ненных условиях, в том числе и в выемке, где первые два способа неприемлемы.
Недостатком способов углов и продолженных хорд является снижение точности разбивки кривой по мере возрастания ее длины, так как положение каждой последующей точки определяется относительно предыдущей.
Источник
Разбивка кривых на местности.
Середину кривой СК закрепляют, отложив от ВУ по направлению биссектрисы отрезок, равный Б (или Бс).
На новом после вершины угла направлении трассы откладывают величину домера, после чего продолжают разбивку пикетажа. Обеим точкам домера (его началу и концу) присваивают одно и то же пикетажное наименование, благодаря чему пикетаж точки КК совпадает с пикетажем, считаемым по кривой.
Положение начала кривой НК и конца кривой КК определяют, используя разбитый пикетаж. Например, если ПК НК = 5 + 39,27, то от пикета № 5 откладывают вперёд 39,27 м и здесь колышком и сторожком закрепляют точку НК.
Детальная разбивка кривых. При детальной разбивке кривую закрепляют на местности через 10 или 20 м, применяя разные способы.
Способ ординат от касательной для круговой кривой. Для каждой точки i (рис. 15.7, а), задавая расстояние k от начала кривой, вычисляют ее координаты:
Здесь угол j выражен в радианах и равен j = k/R.
Разбивку кривой ведут от ее начала и от конца к середине. Мерной лентой по оси x откладывают длину кривой k, от полученной точки отступают назад на величину k–x и здесь строят перпендикуляр – ординату y. Значения k–x и y обычно выбирают из таблиц для разбивки кривых.
Рис. 15.7 Детальная разбивка кривых:
а – способом ординат от касательной для круговой кривой;
б – то же, для переходной и следующей за ней круговой кривой;
в – разбивка кривой электронным тахеометром
Способ ординат от касательной для переходной и следующей за ней круговой кривой (рис. 15.7, б). Для точек, расположенных в пределах переходной кривой, то есть при k £ l, координаты x, y вычисляют по формулам (15.8) и (15.9), принимая s = k. Для точек i, расположенных на круговой кривой, где k > l, вычисления выполняют по формулам:
Действия при разбивке кривой на местности аналогичны тем, что выполняют при разбивке круговой кривой.
Разбивка кривой с помощью электронного тахеометра. Выбирают на местности такую точку T (рис. 15.7, в), где обеспечена видимость точек будущей кривой и ее начала НК. В точке НК измеряют угол g и расстояние d. Вычисляют координаты точки Т:
По приведенным выше формулам вычисляют координаты точек кривой xi, yi (i = 1, 2, …).
Электронный тахеометр устанавливают в точке Т. Зная координаты точек Т, НК и i, вычисляют разбивочные элементы — углы bi и расстояния di. Построив тахеометром вычисленные углы и расстояния, находят и закрепляют положение точек кривой на местности.
Оставьте свой комментарий
Оставить комментарий от имени гостя
Комментарии
Закрепленные
Понравившиеся
Последние материалы
Заключение (Грунты)
При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8.
Представления о решении задач нелинейной механики грунтов
На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов.
Прочность грунтов при сложном напряженном состоянии
Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем.
Основные закономерности татического деформирования грунтов
За последние 15. 20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…
Упругопластическое деформирование среды и поверхности нагружения
Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…
Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний
При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…
Инварианты напряженного и деформированного состояний грунтовой среды
Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…
О коэффициентах устойчивости и сопоставление с результатами опытов
Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…
Давление грунта на сооружения
Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…
Несущая способность оснований
Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…
Процесс отрыва сооружений от оснований
Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…
Решения плоской и пространственной задач консолидации и их приложения
Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…
Источник
Способы детальной разбивки закруглений
Схема круговой кривой
Для расчета закругления на местности теодолита измеряют угол β, для того чтобы вычислить угол поворота трассы φ=180º–β (φ–угол между первоначальным и последующим направлением трассы)
Радиус закругления R выбирают в соответствии с условиями техники безопасности эксплуатации сооружения и рельефа. По φ и R вычисляют основные элементы круговой кривой.
Тангенс (Т) – расстояние от вершины угла (ВУ) до начало кривой (НК) или конца кривой (КК):
Кривая (К) – длина дуги окружности с радиусом R от НК до КК:
Биссектриса (Б) – расстояние от ВУ до середины кривой (СК):
Б
Домер (Д) – разность путей по ломаной линии и дуге:
За концом кривой все пикеты смещаются вперед на Д.
Для того чтобы разбить круговую кривую на местности достаточно закрепить ее основные точки: начало, середину и конец.
Для того чтобы закрепить НК и КК от ВУ по оси трассы откладывают Т. Для того чтобы закрепить СК, при помощи теодолита откладывают угол β/2 и в этом направлении откладывают Б.
Пикетажное значение НК и КК вычисляют по формулам:
Контроль: КК=ВУ+Т–Д
При больших R не достаточно только закрепить НК, СК, КК. В этом случае пользуются детальной разбивкой круговой кривой, которая выполняется, например, способом прямоугольных координат, продолженных хорд и т.д.
Дальше приступают к нивелированию трассы, которое начинают с привязки трассы к реперу ГВС. Привязка заключается в проложении нивелирного хода о репера до начала трассы (ПК0). Далее нивелируют пикеты, «плюсовые» точки, поперечники, главные точки кривых. Нивелирование выполняется геометрическим способом «из середины», причем пикеты нивелируют как связующие точки (по двум сторонам реек), а остальные как промежуточные (по черной стороне). Заканчивается нивелирование привязкой трассы к реперу высотной сети.
Способ прямоугольных координат является наиболее точным и простым; он применяется в открытой равнинной местности. В этом способе положение точек на кривой через равные промежутки k определяется прямоугольными координатами х и y; за ось абсцисс принимают линию тангенса (касательной), а за начало координат — начало (НК) или конец кривой (КК).
Для вычисления координат х, у точек детальной разбивки предварительно вычисляют центральный угол θ, соответствующий заданной дуге k,
Далее, решая прямоугольный треугольник ОС1, получают:
или
Аналогичным образом вычисляют координаты последующих точек, расположенных на первой половине кривой, через расстояние k по дуге кривой:
Определение положения точек 1, 2, 3, кривой на местности сводится к откладыванию рулеткой от НК (или КК) по направлению тангенса отрезков х1, х2, х3 построению при помощи эккера (теодолита) перпендикуляров из концов этих отрезков и откладыванию по ним отрезков у1, у2, у3
Разбивку ведут от начала кривой (НК) до середины, а затем от конца кривой (КК) также до середины кривой (СК). Обе половины кривой должны сомкнуться в точке СК, что контролирует точность детальной разбивки. Достоинством данного способа является то, что положение каждой точки кривой определяется независимыми промерами и при переходе от одной точки к другой погрешности не накапливаются.
Полярный способ (способ углов) целесообразно применять на косогорах, насыпях и в полузакрытой равнинной местности. Способ базируется на положении геометрии о том, что угол с вершиной в какой-либо точке кривой, образованный касательной и секущей, равен половине соответствующего центрального угла. Как видно из рисунка, хорда . Отсюда
.
Положение точек кривой на местности определяют линейно-угловыми засечками. Для этого теодолит устанавливают в точке НК (или КК) и от направления тангенса откладывают последовательно углы и т. д. Отложив рулеткой по направлению первого визирного луча отрезок l, закрепляют на местности точку 1. Из точки1 протягивают рулетку до пересечения отрезка l со вторым визирным лучом и закрепляют точку 2 и т. д.
Недостатком способа является снижение точности детальной разбивки с увеличением числа точек, так как положение каждой последующей точки находится относительно предыдущей.
Способ продолженных хорд применяют при разбивке кривых на застроенных и залесенных участках, в выемках и тоннелях.
Разбивку кривой ведут с помощью мерной ленты и рулетки. По радиусу кривой R и принятой длине хорды l вычисляют длину отрезка d, называемого промежуточным перемещением.
Значение величины d находят из подобия треугольников 0—1—2 и 1—2—2′:
отсюда
Положение первой точки кривой находят способом прямоугольных координат; при этом значения координат х1 и у1 вычисляют по формулам (1) и (2). Закрепив на местности точку 1, на продолжении створа линии НК-1 откладывают длину хорды l и отмечают временную точку 2′. Затем находят положение точки 2 на кривой линейной засечкой отрезками I из точки 1 и d из точки 2». Положение остальных точек детальной разбивки до середины кривой находится аналогичным образом.
Данный способ имеет тот же недостаток, что и полярный способ.
Источник