Механизмы передачи теплоты
Теплота от одного тела к другому передается: теплопроводностью, конвекцией и тепловым излучением.
Теплопроводность (кондукция) – перенос теплоты вследствие движения и колебаний микрочастиц, соприкасающихся друг с кругом. Теплопроводностью передается теплота в твердых телах и тонких слоях жидкости и газа.
Конвекция – перенос теплоты путем перемещения макрообъектов жидкости или газов. Перемещение возможно за счет разности плотностей, обусловленной неодинаковой температурой отдельных участков объема системы (естественная, или свободная, конвекция), а также путем принудительного их перемещения в результате внешних механических воздействий с помощью насосов, компрессоров, воздуходувок и т. п. (вынужденная конвекция).
Тепловое излучение (лучеиспускание) – перенос теплоты в виде электромагнитных волн, излучаемых нагретым телом.
Указанные механизмы распространения теплоты редко встречаются в чистом виде. Обычно они сопутствуют друг другу – происходит так называемый сложный теплообмен.
Теплопроводность описывается основным законом передачи теплоты – законом Фурье, указывающим, что количество теплоты, переданное вследствие теплопроводности, пропорционально градиенту температуры dt/dn, площади dF, через которую осуществляется передача теплоты, времени dτ проведения процесса:
Знак минус в уравнении (5.5) компенсирует отрицательное значение градиента температур. Коэффициент пропорциональности λ, , называется коэффициентом теплопроводности и показывает, какое количество теплоты проходит вследствие теплопроводности через 1 м 2 поверхности за 1 с при разности температур 1 К, приходящейся на 1 м длины нормали к изотермической поверхности.
Коэффициент теплопроводности зависит в первую очередь от природы и агрегатного состояния веществ, через которые осуществляется передача теплоты. В меньшей степени на теплопроводность газов влияют температура, давление и влажность.
При нормальных температурах и давлениях лучшими проводниками теплоты являются металлы (λ = 17,5. 384 Вт/(м*К)), худшими – газы (λ = 0,006. 0,6 Вт/(м*К)). Для строительных материалов (в том числе теплоизоляторов) λ = 0,05. 1,0 Вт/(м*К), для капельных жидкостей λ = 0,1. 0,7 Вт/(м*К).
На основании решения уравнения Фурье можно получить зависимость, описывающую передачу теплоты через стенки различных конфигураций.
Плоская стенка. Считаем, что температура стенки меняется в одномерном поле от температуры tcт1 до tcт2 (tст1 > tст2), толщина стенки – δ, а теплопроводность – λ.
В соответствии с уравнением Фурье количество теплоты, проходящей через стенку площадью F при стационарном режиме, можно записать как
Разделив переменные, проинтегрируем данное уравнение в заданных граничных условиях
Величина, обратная коэффициенту пропорциональности, R = δ/λ, называется термическим сопротивлением стенки. В случае многослойной стенки (n – число слоев) ее термическое сопротивление определяется по зависимости
Цилиндрическая стенка. Изменение температуры в цилиндрической стенке происходит от tст1 на радиусе r1 до tст2 на r2 (tcт1 > tст2, r1 > r2). При этом поверхность теплообмена будет величиной переменной, зависящей от текущего радиуса r, и составляет
где L – высота стенки.
Уравнение Фурье запишется в этом случаев виде
Разделив переменные, проинтегрируем полученное выражение в соответствующих пределах:
В результате получим
Для многослойной стенки, состоящей из n слоев это уравнение может быть записано в виде
Конвекция – процесс распространения теплоты в жидкости или газе от поверхности твердого тела или наоборот. Процесс передачи теплоты одновременно конвекцией и теплопроводностью называют теплоотдачей.
При теплоотдаче теплота передается от стенки через тонкий пограничный слой теплопроводностью, а затем в поток (ядро) жидкости конвекцией.
Основным законом теплоотдачи является закон Ньютона, согласно которому количество теплоты dQконв, переданное конвекцией от поверхности к окружающей среде (или наоборот), пропорционально поверхности теплообмена dF, разности температур поверхности tст и окружающей среды tf и времени дт проведения процесса:
Коэффициент пропорциональности α, , называется коэффициентом теплоотдачи и показывает, какое количество теплоты передается от теплообменной поверхности 1 м 2 в окружающую среду или наоборот в течении 1 с при разности температур теплообменной поверхности и окружающей среды 1 К.
Коэффициент теплоотдачи не является постоянной величиной для рассматриваемой среды и зависит в первую очередь от гидродинамических условий течения жидкости вдоль теплопередающей поверхности, а также плотности, вязкости, удельной теплоемкости и других параметров теплоносителя.
Далее приведены ориентировочные значения коэффициентов – теплоотдачи для типичных процессов.
Нагревание и охлаждение газов . 1,0. 60
Нагревание и охлаждение воды. 200. 10000
Кипение воды. 2000. 24000
Конденсация водяных паров. 4000. 15000
Конденсация паров органических жидкостей. 500. 2000
Источник
Способы распространения тепла
Теплообменом называется перенос тепла от одних тел к другим или одних частей тела к другим, вызываемый разностью температур. Процесс теплообмена – это сложный процесс, он связан с конвективной и молекулярной диффузией и определяется законами аэродинамики, газодинамики, термодинамики, передачи энергии в форме теплоты, передачи лучистой энергии и превращением ее в теплоту и наоборот.
Теплообмен характеризуется выравниванием температуры и осуществляется тремя способами: теплопроводностью, конвекцией, излучением.
Теплопроводность – это передача тепла молекулярной диффузией, т.е. перенос тепловой энергии осуществляется от частиц обладающих большей энергией к частицам с меньшей энергией. Теплопроводность наблюдается только в твердых телах и неподвижных слоях жидкости или газа.
Конвекция – передача тепла потоками жидкости или газа из одной области пространства в другую. Конвекция бывает свободной и вынужденной.
Свободная конвенция возникает из-за разности плотностей нагретой и холодной среды. При вынужденной конвенции движущиеся потоки создаются принудительно – компрессором, вентилятором и т.д.
Конвекция сопровождается переносом тепла теплопроводностью в пограничных слоях. Совместный процесс конвекции и теплопроводности называется конвективным теплообменом.
Излучение – это передача тепловой энергии путем электромагнитных колебаний. Процесс передачи тепла излучением можно условно разделить на 3 этапа:
1. Преобразование внутренней энергии системы в энергию электромагнитных волн;
2. Распространение этих волн в среде, разделяющей источник и приемник.
3.Реакция приемника на излучение.
В реальных условиях названные способы переноса тепла протекают одновременно: такое физическое явление называется сложным теплообменом. Его закономерности могут быть установлены на основе закономерностей простых видов теплообмена.
Тепловой поток – это количество тепловой энергии, которая передается через произвольную поверхность в единицу времени:
,
(2.1)
Удельный тепловой поток – это количество тепловой энергии, которая передается через 1м 2 поверхности за единицу времени:
,
(2.2)
где F – площадь поверхности, м 2 ; Ф – тепловой поток, Вт
.2.2 Теплопроводность
Если выделить в теле слой толщиной dх, то через площадку dF, нормальную к направлению теплового потока, за время пройдет количество теплоты, равное
, (2.3)
где – коэффициент теплопроводности, Вт/м·К
;
– разность температур в слое, К;
– толщина слоя, м;
– время, с;
dF — площадь, м 2 .
Дифференциальная зависимость (2.3) называется основным уравнением теплопроводности или уравнением Фурье
Рис. 2.1 Схема переноса тепла через плоскую однородную
Величина показывает изменение температуры в слое
и называется градиентом температур. Распространение тепла в теле происходит лишь в сторону понижения температуры, поэтому величина
отрицательна, на что показывает знак минус в уравнении Фурье.
Источник
Теплообмен — основные виды в физике, суть и примеры
Передача тепла или теплообмен это процесс распространения внутренней энергии в пространстве с разными температурами.
Теплопроводность это способность веществ и тел проводить энергию (тепло) от частей с высокой температурой к частям с более низкой. Такая способность существует за счет движения частиц. Энергия может передаваться между телами и внутри одного тела. Нагревая в пламени один конец гвоздя, мы рискуем обжечься о другой его конец, не находящийся в пламени.
В начале развития науки о свойствах тел и веществ считалось, что тепло передается путем перетекания «теплорода» между телами. Позже, с развитием физики, теплопроводность получила объяснение взаимодействием частиц вещества. Электроны в нагреваемом над огнем участке гвоздя движутся активнее и через столкновения отдают тепло медленным электронам в части, которая не подвергается нагреванию.
Виды теплообмена и способы передачи тепла
В физике выделяют несколько видов теплообмена:
Теплопроводность – свойство материалов передавать через свой объем поток тепла путем обмена энергией движения частиц.
Конвекция – перенос тепла, осуществляемый перемещением неравномерно прогретых участков среды (газа, жидкости) в пространстве.
Излучение – в данном случае перенос тепла в вакууме или газовой среде осуществляется электромагнитными волнами.
Рассмотрим сущность и назначение каждого из видов теплообмена.
Теплопроводность
В большинстве случаев виды теплообмена тесно связаны и проходят одновременно. Конвекция всегда дополняется теплопроводностью, так как при движении объема среды всегда имеется взаимодействие частиц с разными температурами. Такой процесс имеет название конвективного теплообмена.
Примером такого типа теплообмена является остывание горячего чая, налитого в холодную металлическую кружку. Отдача тепла может сопровождаться его излучением, тогда в переносе теплоты участвуют все три вида: теплопроводность, конвекция, тепловое излучение.
Рассмотрим более подробно теплопроводность.
Этот вид теплообмена присущ твердым телам, но присутствует так же в жидкостях и газах. В твердых телах теплопроводность является основным видом теплообмена и напрямую зависима от природы вещества, его плотности, химического состава, влажности, температуры.
Разные тела и вещества имеют разную теплопроводность. Количественным показателем теплопроводности служит коэффициент теплопроводности, он обозначается буквой λ (лямбда). Чем выше плотность, влажность и температура тела, тем больше λ.
Проведение тепла происходит за счет взаимодействий между частицами. Конечной целью процесса будет выравнивание внутренней температуры по всему телу. Теплопроводность жидкостей меньше, чем у твердых тел, у газов – меньше, чем у жидкостей. Причиной является большое расстояние между молекулами в жидкостях, особенно в газах.
Низкая теплопроводность воздуха издавна используется при изготовлении двойных оконных рам. Теплопроводность воздуха гораздо ниже теплопроводности стекла. Воздушная прослойка межу стеклами защищает от зимней стужи.
Плохая теплопроводность, появившаяся в процессе эволюции в качестве защиты от критических температур, у живых организмов. Шерсть, пух, волосы, жир обладают очень низкой теплопроводностью. Именно поэтому мы не мерзнем зимой в теплых носках, песцы могут спать на снегу, а моржи выживают в условиях Арктики за счет жировой прослойки.
В таблице приведены примеры материалов, веществ и сред с наименьшей и наибольшей теплопроводностью.
Исходя из данных, приведенных в таблице, можно сделать некоторые выводы:
В вакууме тепло не проводится. Передача тепла в вакууме может происходить с помощью излучения. Таким способом тепло Солнца доходит до нашей планеты.
Материал с наивысшей теплопроводностью называется графен, который активно используется в наноэлектронике.
Металлы тоже достаточно теплопроводные. Известно, как быстро нагревается металлическая ложка в горячем супе.
Строительные материалы обладают низкой теплопроводностью, что и обуславливает их использование для возведения теплых и надежных жилищ.
С понятием теплопроводности тесно связано понятие теплоемкости.
Теплоемкостью называют количество тепла, которое поглотило тело (вещество), чтобы его температура повысилась на 1 градус. Действительно, для повышения температуры металлического стержня на 1 градус, необходимо, чтобы он обладал теплопроводностью для равномерного нагревания всего объёма.
Знания о теплопроводности веществ и материалов необходимы в строительстве, промышленности, быту. Степень теплопроводности материала обуславливает его применение в той или иной сфере. Разработка и поиск новых веществ с уникальными теплоизоляционными свойствами – важнейшая задача современной науки.
Конвекция
При конвекции энергия передается потоками, возникающими в различных средах.
В зависимости от причины возникновения, процессы этого типа теплообмена делят на естественную и вынужденную конвекцию:
Естественная конвекция возникает под влиянием естественных сил: неравномерного прогрева, силы тяжести. Процессы естественной конвекции происходят на планете ежеминутно. Появление облаков, формирование атмосферных фронтов, циклонов и антициклонов в атмосфере возможно благодаря этому процессу. Воды мирового океана так же подвержены процессам конвекции, в результате образуются океанические течения. Движение тектонических плит так же обусловлено конвективными процессами.
Вынужденная конвекция — зависит от присутствия внешних сил. Например, при помешивании ложкой горячий чай остывает именно за счет этого явления.
Излучение
Излучение тепла является электромагнитным процессом. Тепло выделяют любые тела, температура которых выше 0 К.
Тепло излучается телами благодаря тому, что любое вещество состоит из молекул и атомов, а они, в свою очередь, из заряженных протонов и электронов. Таким образом, любое тело оказывается пронизанным электромагнитным полем.
Источник