Способы раскисления металла при сварке

Раскисление металла при сварке

При всех способах сварки весьма вероятным (в большей или меньшей степени) является окисление основы или составляющих сплава. Возможны следующие три основные вида окисления со­ставляющих сплава шлаком: прямое окисление, окисление низших оксидов до высших, окисление на основе обменных реакций (9.46).

Прямое окисление в общем виде может быть представлено ре­акцией

(9.51)

в которой происходит непосредственное окисление элемента сво­бодным кислородом с образованием оксида. Такие процессы за редким исключением сопровождаются выделением теплоты, т. е. они являются экзотермичными (табл. 9.1).

Окисление низших оксидов до высших можно представить на следующем примере: FeO+ О2=Fe2О3. «Поставщиками» свобод­ного кислорода в зону сварки помимо воздушной атмосферы мо­гут быть двуокись углерода, пары воды, карбонаты и высшие ок­сиды, диссоциирующие при нагреве и выделяющие свободный кислород. Однако следует помнить, что все реакции, идущие с вы­делением тепла, в том числе и окислительные, при высоких темпе­ратурах протекают медленно. На поверхности же открытой сва­рочной ванны интенсивность прямых окислительных реакций зна­чительно выше вследствие дополнительного выделения теплоты при прямом контакте с кислородом.

Пример окисления на основе обменных реакций представляет­ся следующим уравнением:

(9.52)

На направление реакции (9.52) помимо внешних условий будут существенно влиять концентрации реагирующих веществ и срод­ство элементов к кислороду

Источник

Металлургические процессы и основные реакции при сварке

ОСНОВНЫЕ РЕАКЦИИ В ЗОНЕ СВАРКИ

При ручной дуговой сварке электродами с толстым слоем покрытия химические реакции между металлом, шлаком и газами дуги протекают в момент перехода капель расплавленного металла электрода и покрытия через дуговой промежуток при температуре 2100—2300° С. Дальнейшие химические и физические процессы протекают в сварочной ванне. При сварке под флюсом основные химические реакции происходят только в сварочной ванне под слоем расплавленного флюса.

Рассмотрим основные реакции в зоне сварки для стали, как наиболее распространенного металла, подвергаемого сварке.

Окисление. Кислород является наиболее вредной примесью в зоне сварки, так как окисляет элементы, входящие в состав металла шва, и ухудшает его качество, образуя химические соединения — окислы. Окисление элементов в основном происходит за счет кислорода, содержащегося в газах и шлаках сварочной зоны. В меньшей степени окисление может быть вызвано кислородом поверхностных окислов свариваемого металла (окалины, ржавчины). При случайном увеличении длины дуги капли электродного металла могут окисляться кислородом окружающего воздуха.

С железом кислород образует три окисла:

При окислении сперва образуется закись железа, которая в дальнейшем при соответствующих условиях (температуре, соотношение кислорода и железа в сварочной ванне) может переходить в окись и закись-окись железа. При окислении железа в процессе сварки основное значение имеет закись железа, так как только она способна растворяться в жидком металле.

Когда содержание кислорода в стали достигнет 0,035%, избыточный кислород будет выделяться из раствора в виде закиси-окиси железа и располагаться между зернами металла.

В общем виде реакцию между элементом металла и кислородом можно выразить следующей формулой

где Me — масса элемента металла;

О2 — масса кислорода; m и n — численные коэффициенты формулы химической реакции.

Стрелки указывают направление реакции: направо — окисление, налево — восстановление металла из его окисла (раскисление) .

Химические реакции в зоне сварки протекают не до конца, а до некоторого равновесного состояния между исходными веществами и продуктами реакции. Равновесное состояние характеризуется одновременным присутствием в зоне реакции как свободного металла, так и его окисла в определенных соотношениях. Состояние равновесия зависит в первую очередь от количеств (концентрации) реагирующих веществ, температуры и давления в зоне реакции.

Равновесное состояние определяется величиной константы равновесия, вычисляемой по формуле

где Me и О — содержание в % массы элемента (Me) и кислорода (О) в зоне реакции; m ип — численные коэффициенты формулы реакции.

Читайте также:  Как вылечить рак легких народными способами

Величина константы равновесия позволяет определить направление реакции. Чем больше произведение концентраций вступающих в реакцию веществ (т. е. числитель в формуле константы равновесия) по сравнению с равновесной и чем меньше концентрация продуктов реакции (т. е. знаменатель в формуле константы) по сравнению с равновесной, тем энергичнее будет протекать реакция вправо в сторону окисления. При обратном соотношении, когда подсчитанная константа будет меньше равновесной, реакция пойдет влево и будет происходить восстановление металла из его окислов. Кроме соотношения концентраций реагирующих веществ на направление реакции сильно влияет ее температура, поэтому сравнение производят для одинаковых температур в зоне реакции.

Концентрации реагирующих веществ определяют только направление реакции. Возможность же данной реакции обусловлена химическим сродством участвующих в ней веществ, в данном случае сродством к кислороду.

При наличии в свариваемом металле нескольких элементов они начинают окисляться все одновременно, но те элементы, у которых сродство к кислороду при данной температуре больше, будут окисляться интенсивнее и полнее.

При сварке стали в первую очередь окисляется железо, являющееся основным элементом. Другие элементы окисляются тем быстрее, чем больше химическое сродство данного элемента с кислородом. По степени уменьшения химического сродства с кислородом элементы могут быть поставлены в следующий ряд: алюминий, титан, кремний, марганец, хром, молибден, железо, никель, медь. Углерод при повышении температуры увеличивает активность к кислороду и при 1700° С превышает своей активностью титан, а при 2100° С — алюминий.

По мере уменьшения в зоне реакции концентрации элементов, обладающих большим сродством к кислороду, скорость их окисления падает. Соответственно возрастает скорость окисления других элементов, обладающих меньшим сродством с кислородом, которые начинают выгорать более интенсивно до тех пор, пока их концентрация не уменьшится до равновесной и не прекратится реакция окисления. Такой процесс последовательного увеличения скорости окисления отдельных элементов продолжается до тех пор, пока концентрации всех элементов не будут соответствовать равновесным, после чего процессы окисления металла в сварочной ванне прекратятся.

При сварке стали окисление железа может происходить также под действием кислорода газов: СО, С02 и паров воды Н20 по реакциям:

Марганец и кремний, обладающие высоким сродством к кислороду, могут интенсивно выгорать при сварке стали. Выгорание углерода при сварке стали протекает по реакциям:

При нагреве ржавого металла присутствующая в ржавчине влага испаряется, а содержащийся в ней кислород окисляет свариваемый металл. Если кромки покрыты окалиной, то последняя при плавлении переходит в закись железа (FeO) с выделением кислорода. Кислород закиси железа и выделившийся из окалины свободный кислород также окисляют металл шва.

Присутствие кислорода в металле шва в виде твердого раствора или включений окислов, в первую очередь, сказывается на ухудшении механических свойств наплавленного металла: понижаются временное сопротивление, предел текучести, относительное удлинение, ударная вязкость. Кроме того, кислород снижает стойкость металла против коррозии, повышает склонность к старению, делает металл хладноломким и красноломким.

Таким образом, главным условием получения наплавленного металла высокого качества является защита его от окисления кислородом окружающей среды. Это достигается созданием вокруг расплавленного металла защитной среды из газов и шлаков, а также раскислением металла шва.

Раскисление. Процесс удаления кислорода из наплавленного металла с целью повышения его качества называется раскислением. Реакции раскисления выражаются тем же уравнением, что и окисления, но протекают в обратном порядке, т. е. справа налево.

Раскисление осуществляется или взаимодействием между наплавленным металлом и шлаком, или путем введения в сварочную ванну элементов — раскислителей, обладающих большим сродством с кислородом, чем железо. Благодаря защите расплавленного металла газами, шлаками и раскислению содержание кислорода в наплавленном металле при сварке толстопокрытыми электродами и под флюсом очень невелико и практически составляет 0,005—0,060%. При сварке же электродами с тонким (меловым) покрытием содержание кислорода в металле шва много выше и может достигать 0,25%. Для сравнения укажем, что содержание кислорода в электродной проволоке не превышает 0,018%. Раскислители вводят в состав сварочной проволоки или электродных покрытий и флюсов, откуда они поступают в сварочную ванну.

Читайте также:  Способы осуществления государственной территории

Рассмотрим некоторые наиболее типичные реакции раскисления.

Раскисление кремнием и марганцем происходит по реакциям:

Образующиеся при этом двуокись кремния (Si02) и закись марганца (МпО) плохо растворимы в жидком металле и переходят в шлак. Закись марганца способна растворять в себе до 60% закиси железа, выводя таким образом основное количество FeO в шлак.

Закись железа, закись марганца и двуокись кремния по химическим свойствам являются основаниями и могут вступать в реакцию с кислотными окислами, образуя соединения типа 2Fe0-Si02, 2Mn0•Si02 (силикаты) и 2FeO • Ti02 (титанаты). Эти соединения почти не растворимы в жидком металле и полностью остаются в шлаке, что способствует очистке металла от указанных окислов.

Окислы по химическим свойствам могут быть кислые и основные. К кислым относятся: двуокись кремния (Si02) и двуокись титана (Ti02). К основным — окись кальция (СаО), закись железа (FeO), закись марганца (МпО), окись натрия (Na20), окись калия (К20) и окись магния (MgO).

Если в шлаках, образующихся при сварке, преобладают кислые окислы, то такие шлаки, а также образующие их покрытия и флюсы, называются кислыми. Преобладание в шлаке основных окислов, наоборот, придает ему химические свойства основания. Соответственно, электродные покрытия и флюсы, дающие основные шлаки, называются основными.

При использовании кислых покрытий и флюсов для сварки сталей с повышенным содержанием кремния, хрома и марганца окислы этих элементов могут оставаться в металле шва, увеличивая содержание в нем кислорода, что приводит к снижению ударной вязкости. Поэтому для сварки таких сталей лучше использовать основные покрытия и флюсы. Основные покрытия и флюсы дают основные шлаки, содержащие преимущественно окись кальция (СаО), которая не может отнимать кислород от окислов металла. Поэтому для раскисления наплавленного металла в основные покрытия и флюсы вводят ферросплавы: ферросилиций и ферротитан. В этом случае главными реакциями раскисления при основных покрытиях и флюсах будут — раскисление кремнием:

2Fe0 + Si=2Fe + Si02

и раскисление титаном:

2FeO + Ti = 2Fe + TiO2

Эти реакции протекают без газообразования, и сварочная ванна остается спокойной. Поэтому покрытия основного характера называют также спокойными. Основные электродные покрытия дают наплавленный металл с высокими механическими свойствами.

Раскисление углеродом. С кислородом окислов углерод взаимодействует главным образом в момент расплавления электрода и только в зоне наиболее высоких температур сварочной ванны.

Раскисление углеродом происходит по реакции FeOMeTмет = FeMеT + СОатм

Образовавшаяся газообразная окись углерода (СО) выделяется в атмосферу, вызывая сильное кипение сварочной ванны. Поэтому кислые покрытия иногда называют кипящими.

Если кремния в металле шва недостаточно, то раскисление будет происходить преимущественно за счет углерода с образованием СО, избыточное количество которой не успевает выделиться из твердеющего металла и остается в нем, образуя газовые поры. Для получения плотного беспористого шва необходимо подавлять реакцию окисления углерода повышением содержания кремния до 0,2—0,3% в металле сварочной ванны. При понижении содержания кремния в металле шва до 0,12% и ниже неизбежно образование большого количества пор.

Раскисление алюминием. Выше указывалось, что алюминий обладает большим сродством к кислороду. Однако окись алюминия (А1203) не растворима в жидком металле и медленно переходит в шлак. Кроме того, алюминий способствует окислению углерода, что вызывает пористость шва. Поэтому алюминий как раскислитель при сварке стали применяется редко и вводится в металл шва только тогда, когда нужно уменьшить (подавить) реакции окисления других легкоокисляемых элементов, например титана, но имеющих меньшее сродство с кислородом, чем алюминий.

Читайте также:  Бизнес это способ развития организации

Влияние азота. Азот поглощается расплавленным металлом из окружающего воздуха. Под действием высоких температур сварочной дуги азот частично переходит в атомарное состояние и растворяется в жидком металле. В процессе охлаждения сварочной ванны азот выделяется из раствора и, взаимодействуя с металлом и его окислами, образует химические соединения, называемые нитридами: Fe2N, Fe4N, MnN, SiN. Нитриды в стали повышают ее прочность и твердость, но сильно уменьшают пластичность. Поэтому азот является вредной примесью в наплавленном металле.

Наибольшее насыщение металла азотом дает дуговая сварка длинной дугой и голыми электродами (до 0,2% N2), наименьшее — сварка под флюсом (0,002% N2). При сварке покрытыми электродами содержание азота в металле шва может достигать 0,02— 0,05%. С увеличением тока содержание азота в наплавленном Металле уменьшается. Увеличение содержания углерода и особенно марганца в присадочной проволоке или покрытии электрода значительно снижает содержание азота в наплавленном металле. При газовой сварке содержание азота в металле незначительно и составляет 0,015—0,02%.

Влияние серы. Сера является вредной примесью в стали. Она образует сернистое железо (сульфид железа FeS), которое имеет температуру плавления 1193° С, т. е. более низкую, чем сталь. Поэтому при кристаллизации стали сернистое железо остается еще в жидком виде в прослойках между кристаллами сплава и является одной из причин образования горячих трещин при сварке. Серу удаляют введением марганца, который образует с ней химическое соединение — сернистый марганец (MnS) по реакциям:

FeS + Mn = MnS + Fe FeS + МпО = MnS + FeO

Сернистый марганец не растворяется в жидком металле и полностью переходит в шлак.

Удалению серы способствует также окись кальция; при этом происходит реакция

FeS + СаО = FeO + CaS

Влияние фосфора. Присутствие фосфора вызывает неоднородность металла шва, рост зерен и снижение пластичности, особенно при низких температурах (хладноломкость). Он присутствует в металле шва в виде фосфидов железа Fe3P и Fе2Р. Удаление фосфора происходит при реакциях:

Получаемые соединения фосфора переходят в шлак. Основные шлаки лучше удаляют фосфор из металла, чем кислые.

Влияние водорода. Водород является вредной примесью в стали. При температуре дуги молекулы водорода распадаются (диссоциируют) на атомы, а атомы водорода способны хорошо растворяться в наплавленном металле.

При остывании и затвердевании металла атомы водорода вновь соединяются в молекулы, которые собираются в отдельных местах шва, образуя газовые пузырьки. Водород не всегда успевает полностью выделиться из металла и вызывает появление в нем пористости, мелких трещин и флокенов. Сталь с флокенами является хрупкой, в изломе флокены имеют вид светлых пятен и не выявляются обычными методами контроля сварных швов без разрушения.

Источником насыщения металла водородом является влага, содержащаяся в электродном покрытии, флюсах и окружающем воздухе или находящаяся на поверхности свариваемого металла в виде воды, снега, инея. Кроме того, водород содержится в ржавчине, которая может быть на сварочной проволоке или кромках металла.

Атомы водорода несут в себе отрицательный заряд и поэтому при сварке на постоянном токе прямой полярности стремятся к аноду, которым в данном случае является свариваемый металл. При такой сварке металл насыщается водородом больше, чем при сварке постоянным током обратной полярности, когда свариваемый металл является катодом, и отталкивает атомы водорода. При сварке на переменном токе металл в большей степени насыщается водородом, чем при сварке постоянным током обратной полярности, Это обусловлено тем, что при сварке на переменном токе в момент перехода тока через нулевое значение жидкий металл не защищен действием электрического поля дуги и доступен для растворения в нем атомов водорода.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

НОВОСТИ

17 Ноября 2021 14:04
Электрический мини-самосвал своими руками

Источник

Оцените статью
Разные способы