Расчет токов короткого замыкания для начинающих электриков
При проектировании любой энергетической системы специально подготовленные инженеры электрики с помощью технических справочников, таблиц, графиков и компьютерных программ выполняют ее анализ на работу схемы в различных режимах, включая:
2. номинальную нагрузку;
3. аварийные ситуации.
Особую опасность представляет третий случай, когда в сети возникают неисправности, способные повредить оборудование. Чаще всего они связаны с «металлическим» закорачиванием питающей цепи, когда между разными потенциалами подводимого напряжения подключаются случайным образом электрические сопротивления размерностью в доли Ома.
Такие режимы называют токами коротких замыканий или сокращенно «КЗ». Они возникают при:
сбоях в работе автоматики и защит;
ошибках обслуживающего персонала;
повреждениях оборудования из-за технического старения;
стихийных воздействиях природных явлений;
диверсиях или действиях вандалов.
Токи коротких замыканий по своей величине значительно превышают номинальные нагрузки, под которые создается электрическая схема. Поэтому они просто выжигают слабые места в оборудовании, разрушают его, вызывают пожары.
Кроме термического разрушения они еще обладают динамическим действием. Его проявление хорошо показывает видеоролик:
Чтобы при эксплуатации исключить развитие подобных аварий с ними начинают бороться еще на стадии создания проекта электрического оборудования. Для этого теоретически вычисляют возможности возникновения токов коротких замыканий и их величины.
Эти данные используются для дальнейшего создания проекта и выбора силовых элементов и защитных устройств схемы. С ними же продолжают постоянно работать и при эксплуатации оборудования.
Токи возможных коротких замыканий рассчитывают теоретическими методами с разной степенью точности, допустимой для надежного создания защит.
Какие электрические процессы заложены в основу расчета токов короткого замыкания
Первоначально заострим внимание на том, что любой вид приложенного напряжения, включая постоянное, переменное синусоидальное, импульсное или любое другое случайное создает токи аварий, которые повторяют образ этой формы или изменяют ее в зависимости от приложенного сопротивления и действия побочных факторов. Все это приходится предусматривать проектировщикам и учитывать в своих расчетах.
Оценку возникновения м действия токов коротких замыканий позволяют выполнить:
величина силовой характеристики мощности, приложенной от источника напряжения;
структура используемой электрической схемы электроустановки;
значение полного приложенного сопротивления к источнику.
Действие закона Ома
За основу расчета коротких замыканий взят принцип, определяющий, что силу тока можно вычислить по величине приложенного напряжения, если поделить ее на значение подключенного сопротивления.
Он же действует и при расчете номинальных нагрузок. Разница лишь в том, что:
во время оптимальной работы электрической схемы напряжение и сопротивление практически стабилизированы и изменяются незначительно в пределах рабочих технических нормативов;
при авариях процесс происходит стихийно случайным образом. Но его можно предусмотреть, просчитать разработанными методиками.
Мощность источника напряжения
С ее помощью оценивают силовую энергетическую возможность совершения разрушительной работы токами коротких замыканий, анализируют длительность их протекания, величину.
Рассмотрим пример, когда один и тот же кусок медного провода сечением полтора квадратных мм и длиной в полметра вначале подключили напрямую на клеммы батарейки «Крона», а через некоторое время вставили в контакты фазы и нуля бытовой розетки.
В первом случае через провод и источник напряжения потечет ток короткого замыкания, который разогреет батарейку до такого состояния, что повредит ее работоспособность. Мощности источника не хватит на то, чтобы сжечь подключенную перемычку и разорвать цепь.
Во втором случае сработают автоматические защиты. Допустим, что они все неисправны и заклинили. Тогда ток короткого замыкания пройдет через домашнюю проводку, достигнет вводного щитка в квартиру, подъезд, здание и по кабельной или воздушной линии электропередач дойдет до питающей трансформаторной подстанции.
В итоге к обмотке трансформатора подключается довольно протяженная цепь с большим количеством проводов, кабелей и мест их соединения. Они значительно увеличат электрическое сопротивление нашей закоротки. Но даже в этом случае высока вероятность того, что она не выдержит приложенной мощности и просто сгорит.
Конфигурация электрической схемы
При питании потребителей к ним подводится напряжение разными способами, например:
через потенциалы плюсового и минусового выводов источника постоянного напряжения;
фазой и нулем однофазной бытовой сети 220 вольт;
трехфазной схемой 0,4 кВ.
В каждом из этих случаев могут произойти нарушения изоляции в различных местах, что приведет к протеканию через них токов короткого замыкания. Только для трехфазной цепи переменного тока возможны короткие замыкания между:
всеми тремя фазами одновременно — называется трехфазным;
двумя любыми фазами между собой — междуфазное;
любой фазой и нулем — однофазное;
фазой и землей — однофазное на землю;
двумя фазами и землей — двухфазное на землю;
тремя фазами и землей — трехфазное на землю.
При создании проекта электроснабжения оборудования все эти режимы требуется просчитать и учесть.
Влияние электрического сопротивления цепи
Протяженность магистрали от источника напряжения до места образования короткого замыкания имеет определенное электрическое сопротивление. Его величина ограничивает токи короткого замыкания. Наличие обмоток трансформаторов, дросселей, катушек, обкладок конденсаторов добавляют индуктивные и емкостные сопротивления, формирующие апериодические составляющие, искажающие симметричную форму основных гармоник.
Существующие методики расчета токов короткого замыкания позволяют их вычислить с достаточной для практики точностью по заранее подготовленной информации. Реальное электрическое сопротивление уже собранной схемы можно измерить по методике петли «фаза-ноль». Оно позволяет уточнить расчет, внести коррективы в выбор защит.
Основные документы по расчету токов коротких замыканий
1. Методика выполнения расчета токов КЗ
Она хорошо изложена в книге А. В. Беляева “Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ”, выпущенной Энергоатомиздат в 1988 году. Информация занимает 171 страницу.
последовательность расчета токов КЗ;
учет токоограничивающего действия электрической дуги на месте образования повреждения;
принципы выбора защитной аппаратуры по значениям рассчитанных токов.
В книге публикуется справочная информация по:
автоматическим выключателям и предохранителям с анализом характеристик их защитных свойств;
выбору кабелей и аппаратуры, включая установки защиты электродвигателей, силовых сборок, вводных устройств генераторов и трансформаторов;
недостаткам защит отдельных видов автоматических выключателей;
особенностям применения выносных релейных защит;
примерам решения проектных задач.
2. Руководящие указания РД 153—34.0—20.527—98
Этот документ определяет:
методики расчетов токов КЗ симметричных и несимметричных режимов в электроустановках с напряжением до и выше 1 кВ;
способы проверок электрических аппаратов и проводников на термическую и электродинамическую стойкость;
методы испытания коммутационной способности электрических аппаратов.
Указания не охватывают вопросы расчета токов КЗ применительно к устройствам РЗА со специфическими условиями эксплуатации.
3. ГОСТ 28249-93
Документ описывает короткие замыкания, возникающие в электроустановках переменного тока и методику их расчета для систем с напряжением до 1 кВ. Он действует с 1 января 1995 года на территориях Беларуси, Кыргызстана. Молдовы, России, Таджикистана, Туркменистана и Украины.
Государственный стандарт определяет общие методы расчетов токов КЗ в начальный и любой произвольный временной момент для электроустановок с синхронными и асинхронными машинами, реакторами и трансформаторами, воздушными и кабельными ЛЭП, шинопроводами, узлами сложной комплексной нагрузки.
Технические нормативы проектирования электроустановок определены действующими государственными стандартами и согласованы Межгосударственным Советом по вопросам стандартизации, метрологии, сертификации.
Скачать ГОСТ 28249-93 (2003). Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ можно здесь: ГОСТ по расчету токов КЗ
Очередность действий проектировщика для расчета токов короткого замыкания
Первоначально следует подготовить необходимые для анализа сведения, а затем провести из расчет. После монтажа оборудования к процессе ввода его в работу и при эксплуатации проверяется правильность выбора и работоспособность защит.
Сбор исходных данных
Любую схему можно привести к упрощенному виду, когда она состоит из двух частей:
1. источника напряжения. Для сети 0,4 кВ его роль исполняет вторичная обмотка силового трансформатора;
2. питающей линии электропередачи.
Под них собираются необходимые характеристики.
Данные трансформатора для расчета токов КЗ
величину напряжения короткого замыкания (%) — Uкз;
потери короткого замыкания (кВт) — Рк;
номинальные напряжения на обмотках высокой и низкой стороны (кВ. В) — Uвн, Uнн;
фазное напряжение на обмотке низкой стороны (В) — Еф;
номинальную мощность (кВА) — Sнт;
полное сопротивление током однофазного КЗ (мОм) — Zт.
Данные питающей линии для расчета токов КЗ
К ним относятся:
марки и количество кабелей с указанием материала и сечения жил;
общая протяженность трассы (м) — L;
индуктивное сопротивление (мОм/м) — X0;
полное сопротивление для петли фаза-ноль (мОм/м) — Zпт.
Эти сведения для трансформатора и линии сосредоточены в справочниках. Там же берут ударный коэффициент Куд.
Последовательность расчета
По найденным характеристикам вычисляют для:
трансформатора — активное и индуктивное сопротивление (мОм) — Rт, Хт;
линии — активное, индуктивное и полное сопротивление (мОм).
Эти данные позволяют рассчитать общее активное и индуктивное сопротивление (мОм). А на их основе можно определить полное сопротивление схемы (мОм) и токи:
трехфазного замыкания и ударный (кА);
однофазного КЗ (кА).
По величинам последних вычисленных токов и подбирают автоматические выключатели и другие защитные устройства для потребителей.
Расчет токов короткого замыкания проектировщики могут выполнять вручную по формулам, справочным таблицам и графикам или с помощью специальных компьютерных программ.
На реальном энергетическом оборудовании, введенном в эксплуатацию, все токи, включая номинальные и коротких замыканий, записываются автоматическими осциллографами.
Такие осциллограммы позволяют анализировать ход протекания аварийных режимов, правильность работы силового оборудования и защитных устройств. По ним принимают действенные меры для повышения надежности работы потребителей электрической схемы.
Источник
Расчет токов короткого замыкания
Расчет токов короткого замыкания (КЗ) необходим для выбора аппаратуры и проверки элементов электроустановок (шин, изоляторов, кабелей и т. д.) на электродинамическую и термическую устойчивость, а также уставок срабатывания защит и проверки их на чувствительность срабатывания. Расчетным видом КЗ для выбора или проверки параметров электрооборудования обычно считают трехфазное КЗ. Однако для выбора и проверки уставок релейной защиты и автоматики требуется определение и несимметричных токов КЗ.
Расчет токов КЗ с учетом действительных характеристик и действительных режимов работы всех элементов системы электроснабжения сложен.
Поэтому для решения большинства практических задач вводят допущения, которые не дают существенных погрешностей:
— трехфазная сеть принимается симметричной;
— не учитываются токи нагрузки;
— не учитываются емкости, а следовательно, и емкостные токи в воздушной и кабельной сетях;
— не учитывается насыщение магнитных систем, что позволяет считать постоянными и не зависящими от тока индуктивные сопротивления всех элементов короткозамкнутой цепи;
— не учитываются токи намагничивания трансформаторов.
В зависимости от назначения расчета токов КЗ выбирают расчетную схему сети, определяют вид КЗ, местоположение точек КЗ на схеме и сопротивления элементов схемы замещения. Расчет токов КЗ в сетях напряжением до 1000 В и выше имеет ряд особенностей, которые рассматриваются ниже.
При определении токов КЗ используют, как правило, один из двух методов:
— метод именованных единиц – в этом случае параметры схемы выражают в именованных единицах (омах, амперах, вольтах и т. д.);
— метод относительных единиц – в этом случае параметры схемы выражают
в долях или процентах от величины, принятой в качестве основной (базисной).
Метод именованных единиц применяют при расчетах токов КЗ сравнительно простых электрических схем с небольшим числом ступеней трансформации.
Метод относительных единиц используют при расчете токов КЗ
в сложных электрических сетях с несколькими ступенями трансформации, присоединенных к районным энергосистемам.
Если расчет выполняют в именованных единицах, то для определения токов КЗ необходимо привести все электрические величины к напряжению ступени, на которой имеет место КЗ.
При расчете в относительных единицах все величины сравнивают с базисными, в качестве которых принимают базисную мощность одного трансформатора ГПП или условную единицу мощности, например 100 или 1000 МВА.
В качестве базисного напряжения принимают среднее напряжение той ступени, на которой произошло КЗ (Uср = 6,3; 10,5; 21; 37; 115; 230 кВ). Сопротивления элементов системы электроснабжения приводят к базисным условиям в соответствии с табл. 3.1.
Средние удельные значения индуктивных сопротивлений воздушных и кабельных линий электропередачи
Линия электропередачи | xуд, Ом/км |
Одноцепная воздушная линия, кВ: | |
6−220 | 0,4 |
220−330 (при расщеплении на два провода в фазе) | 0,325 |
400−500 (при расщеплении на три провода в фазе) | 0,307 |
750 (при расщеплении на четыре провода в фазе) | 0,28 |
Трехжильный кабель, кВ: | |
6−10 | 0,08 |
0,12 | |
Одножильный маслонаполненный кабель 110−220 кВ | 0,16 |
Расчет токов КЗ начинают с составления расчетной схемы электроустановки. На расчетной схеме указываются все параметры, влияющие на величину тока КЗ (мощности источников питания, средне номинальные значения ступеней напряжения, паспортные данные электрооборудования), и расчетные точки, в которых необходимо определить токи КЗ. Как правило, это сборные шины ГПП, РУ, РП или начало питающих линий. Точки КЗ нумеруют в порядке их рассмотрения начиная с высших ступеней.
По расчетной схеме составляется электрическая схема замещения. Схемой замещения называется схема, соответствующая по своим параметрам расчетной схеме, в которой все электромагнитные (трансформаторные) связи заменены электрическими. На рис. 3.1 приведен пример расчетной схемы, а на рис. 3.2 – соответствующая ему схема замещения.
При составлении схемы замещения для электроустановок выше 1000 В учитывают индуктивные сопротивления электрических машин, силовых трансформаторов и автотрансформаторов, реакторов, воздушных и кабельных линий. Средние удельные значения индуктивных сопротивлений воздушных и кабельных линий электропередачи приведены в табл. 3.2. Активные сопротивления учитывают только для воздушных линий с проводами небольшого сечения и со стальными проводами, а также для протяженных кабельных линий с небольшим сечением.
Активное сопротивление трансформаторов учитывают в случае, когда среднее номинальное напряжение ступени, где находится точка короткого замыкания, В и мощность трансформатора
кВА или питающая и отходящая линии выполнены из стальных проводов.
Рис. 3.1. Расчетная схема | Рис. 3.2. Схема замещения |
После составления схемы замещения необходимо определить ее параметры. Параметры схемы замещения определяются в зависимости от выбранного метода расчета токов КЗ в именованных или относительных единицах. Формулы для определения параметров схемы замещения приведены в табл. 3.2.
Далее схему замещения путем постепенного преобразования (последовательное и параллельное сложение, преобразование треугольника в звезду и др.) приводят к простейшему виду так, чтобы источник питания был связан с точкой КЗ одним результирующим сопротивлением. Преобразования схемы замещения производятся для каждой точки КЗ отдельно.
Расчетные выражения для определения приведенных значений сопротивлений
Элемент электроустановки | Исходный параметр | Именованные единицы, Ом | Относительные единицы, о. е. |
Генератор (G) | | ||
| |||
Энергосистема (С) | Sк, МВ?А | ||
Iоткл.ном, кА | |||
| |||
Трансформатор (Т) | uк, % Sном. т, МВ?А | ||
Автотрансформатор и трехобмоточный трансформатор (Т) (схема замещения – звезда) | uк,В−С, %; uк,В−Н, %; uк,С−Н, %; | | |
Окончание табл. 3.2
2 | |||
Трансформатор с расщепленной обмоткой низшего напряжения (Т) | Uк,В−Н, %; Sном. т, МВ?А | | |
Синхронные и асинхронные электродвигатели, компенсаторы (М) | | ||
Реактор (LR) | xном.LR, Ом | ||
Линия электропередачи (W) | xуд, Ом/км; l, км | ||
Примечание: Sном – номинальные мощности элементов (генератора, трансформатора, энергосистемы), МВ?А; Sб – базисная мощность, МВ?А; Sк – мощность КЗ энергосистемы, МВ?А; Iоткл. ном – номинальный ток отключения выключателя, кА; х*ном. С − относительное номинальное сопротивление энергосистемы; uк % − напряжение КЗ трансформатора; Iб – базисный ток, кА; Uср – среднее напряжение в месте установки данного элемента, кВ; xуд – индуктивное сопротивление линии на 1 км длины, Ом/км; l – длина линии, км |
Зная результирующее сопротивление до точки КЗ, по закону Ома определяют токи КЗ [8].
При расчете в именованных единицах:
, (3.1)
где − ток КЗ, приведенный к базисной ступени напряжения; Uб – напряжение базисной ступени напряжения; Zрез – полное сопротивление (если учитываются индуктивные и активные сопротивления) от источника питания до точки КЗ.
Если напряжение ступени КЗ отличается от напряжения, принятого при расчете за базисное напряжение, полученный ток КЗ необходимо привести к реальному напряжению ступени КЗ по выражению:
, (3.2)
где Uсрн – напряжение ступени КЗ.
При расчете в относительных единицах:
; (3.3)
, (3.4)
где – базисный ток той ступени, на которой определяют ток КЗ; Zрез – полное приведенное сопротивление от источника питания до точки КЗ; Sб – базисная мощность.
При расчете токов КЗ в большинстве случаев требуется знать следующие значения:
– начальное действующее значение периодической составляющей тока КЗ (сверхпереходной ток);
Iу – действующее значение полного тока КЗ за первый период;
I∞ − ток установившегося режима;
Iпt – периодическая составляющая тока КЗ в момент времени t = τ.
Источник