Оценка гликемии при диагностике сахарного диабета: актуальные проблемы и пути их решения
А. В. Индутный, д.м.н.,
Омская государственная медицинская академия
Уровень глюкозы крови имеет основное доказательное значение в диагностике сахарного диабета – синдрома хронической гипергликемии. Корректная клиническая интерпретация результатов определения гликемии и, следовательно, адекватная диагностика сахарного диабета во многом зависят от качества работы лабораторной службы. Хорошие аналитические характеристики современных лабораторных методов определения глюкозы, осуществление внутрилабораторной и внешней оценки качества проведения исследований обеспечивают высокую надежность лабораторного процесса. Но это не решает вопросов сопоставимости результатов измерения глюкозы, полученных при анализе различных видов образцов крови (цельная кровь, её плазма или сыворотка), также как и проблем, обусловленных снижением уровня глюкозы в процессе хранения этих проб.
На практике содержание глюкозы определяют в цельной капиллярной или венозной крови, а также в соответствующих образцах плазмы. Однако нормативные пределы колебаний концентрации глюкозы значимо отличаются в зависимости от вида исследуемого образца крови, что может быть источником интерпретационных ошибок, приводящих к гипер- или гиподиагностике сахарного диабета.
В цельной крови концентрация глюкозы ниже по сравнению с плазмой. Причина этого несоответствия – меньшее содержание воды в цельной крови (на единицу объема). Неводная фаза цельной крови (16%) представлена, главным образом, белками, а также липидно-белковыми комплексами плазмы (4%) и форменными элементами (12%). В плазме крови количество неводной среды составляет лишь 7%. Таким образом, концентрация воды в цельной крови, в среднем, равна 84%; в плазме – 93%. Очевидно, что глюкоза в крови находится исключительно в виде водного раствора, так как распределяется только в водной среде. Поэтому значения концентрации глюкозы при расчете на объем цельной крови и на объем плазмы (у одного и того же пациента) будут отличаться в 1,11 раза (93/84 = 1,11). Эти различия были учтены Всемирной Организацией Здравоохранения (ВОЗ) в представленных нормативах гликемии [1]. Определенное время они не были причиной недоразумений и диагностических ошибок, поскольку на территории отдельной страны для определения глюкозы селективно использовали либо цельную капиллярную кровь (постсоветское пространство и многие развивающиеся страны), либо плазму венозной крови (большинство европейских государств).
Ситуация резко изменилась с появлением индивидуальных и лабораторных глюкометров, оснащенных сенсорами прямого считывания и измеряющих концентрацию глюкозы в расчете на объем плазмы крови. Безусловно, определение глюкозы непосредственно в плазме крови наиболее предпочтительно, так как не зависит от гематокрита и отражает истинное состояние углеводного обмена. Но совместное использование в клинической практике данных гликемии для плазмы и для цельной крови привело к ситуации «двойных стандартов» при сопоставлении результатов исследования с диагностическими критериями сахарного диабета. Это создало предпосылки для различных интерпретационных недоразумений, отрицательно сказывающихся на эффективности контроля гликемии и нередко препятствующих использованию клиницистами данных, полученных больными при самоконтроле гликемии.
Для решения названных проблем Международная Федерация Клинической Химии (IFCC) разработала рекомендации по представлению результатов определения уровня глюкозы в крови [2]. В данном документе предложено преобразовывать концентрацию глюкозы в цельной крови в величину, эквивалентную eё концентрации в плазме путем умножения значения первой на коэффициент 1,11, соответствующий соотношению концентраций воды в этих двух типах образцов. Использование единого показателя «уровень глюкозы плазмы крови» (вне зависимости от метода определения) призвано существенно сократить число врачебных ошибок при оценке результатов анализа и устранить непонимание пациентами причин различий между показаниями индивидуального глюкометра и данными лабораторного исследования.
Основываясь на мнении экспертов IFCC, ВОЗ внесла уточнения по вопросам оценки уровня гликемии при диагностике сахарного диабета [3]. Важно отметить, что в новой редакции диагностических критериев сахарного диабета из разделов нормальных и патологических значений гликемии исключены сведения об уровне глюкозы в цельной крови. Очевидно, что лабораторная служба должна обеспечивать соответствие предоставляемой информации об уровне глюкозы современным диагностическим критериям сахарного диабета. Предложения ВОЗ [3], направленные на решение этой актуальной задачи, можно свести к следующим практическим рекомендациям:
1. При представлении результатов исследования и оценке гликемии необходимо использовать только данные об уровне глюкозы в плазме крови.
2. Определение концентрации глюкозы в плазме венозной крови (глюкозооксидазным колориметрическим методом, глюкозооксидазным методом с амперометрической детекцией, гексокиназным и глюкозодегидрогеназным методами) следует проводить только в условиях забора крови в контейнер-пробирку с ингибитором гликолиза и антикоагулянтом. Для предотвращения естественных потерь глюкозы необходимо обеспечить хранение контейнера-пробирки с кровью во льду до момента отделения плазмы, но не более чем 30 мин от момента забора крови.
3. Концентрация глюкозы в плазме капиллярной крови определяется при анализе цельной капиллярной крови (без разведения) на приборах, имеющих обеспеченное производителем отделение форменных элементов (Reflotron) или встроенное преобразование результата измерения в уровень глюкозы плазмы крови (индивидуальные глюкометры).
4. При исследовании разведенных образцов цельной капиллярной крови (гемолизатов) приборах с амперометрической детекцией (EcoTwenty, EcoMatic, EcoBasic, Biosen, SuperGL, АГКМ и т. п.) и на биохимических анализаторах (глюкозооксидазным, гексокиназным и глюкозодегидрогеназным методом) определяется концентрация глюкозы в цельной крови. Полученные таким способом данные следует привести к значениям гликемии плазмы капиллярной крови, умножив их на коэффициент 1,11, что преобразует результат измерения в уровень глюкозы плазмы капиллярной крови. Максимальный допустимый интервал от момента забора цельной капиллярной крови до проведения аппаратного этапа анализа (при использовании методов с амперометрической детекцией) или центрифугирования (при использовании колориметрических или спектрофотометрических методов) – 30 мин, с хранением проб во льду (0 — +4°С).
5. В бланках результатов исследования необходимо отражать вид образца крови, в котором производилось измерение уровня глюкозы (в форме наименования показателя): «уровень глюкозы плазмы капиллярной крови» или «уровень глюкозы плазмы венозной крови». Уровни глюкозы в плазме капиллярной и венозной крови совпадают при обследовании пациента натощак. Интервал референтных (нормальных) значений концентрации глюкозы натощак в плазме крови: от 3,8 до 6,1 ммоль/л [4].
6. Следует иметь в виду, что после приема пищи или нагрузки глюкозой концентрация глюкозы в плазме капиллярной крови выше, чем в плазме венозной крови (в среднем — на 1,0 ммоль/л) [1–3]. Поэтому при проведении теста толерантности к глюкозе в бланке результата исследования необходимо указывать информацию о виде образца плазмы крови и предоставлять соответствующие ему критерии интерпретации (таблица).
Источник
Глюкоза в крови
Определение глюкозы в крови – один из наиболее широко распространенных тестов в клинической лабораторной диагностике. Глюкозу определяют в плазме, сыворотке, цельной крови. Согласно Руководству по лабораторной диагностике диабета, представленному Американской Ассоциацией диабета (2011 г.), не рекомендуется измерять глюкозу в сыворотке крови при диагностике диабета, поскольку именно использование плазмы позволяет быстро центрифугировать образцы, чтобы предотвратить гликолиз, не дожидаясь образования сгустка.
Различия в концентрации глюкозы в цельной крови и плазме требуют особого внимания при трактовке результатов. Концентрация глюкозы в плазме выше, чем в цельной крови, причем различие зависит от величины гематокрита, следовательно, использование некоего постоянного коэффициента для сопоставления уровня глюкозы в крови и плазме может привести к ошибочным результатам. Согласно рекомендациям ВОЗ (2006 г.), стандартным методом для определения концентрации глюкозы должен быть метод определения глюкозы в плазме венозной крови. Концентрация глюкозы в плазме венозной и капиллярной крови не отличается натощак, однако через 2 ч после нагрузки глюкозой отличия существенны (Табл.).
Концентрация глюкозы, ммоль/л | ||||
---|---|---|---|---|
Цельная кровь | Плазма | |||
венозная | капиллярная | венозная | капиллярная | |
Норма | ||||
Натощак | 3,3–5,5 | 3,3–5,5 | 4,0–6,1 | 4,0–6,1 |
Через 2 часа после ПГТТ | 6,7 7,8 7,8 8,9 6,1 | >6,1 | >7,0 | >7,0 |
Через 2 часа после ПГТТ | >10,0 | >11,1 | >11,1 | >12,2 |
На уровень глюкозы в биологическом образце значительное влияние оказывает его хранение. При хранении образцов при комнатной температуре в результате гликолиза происходит существенное снижение содержания глюкозы. Для ингибирования процессов гликолиза и стабилизации уровня глюкозы в пробу крови добавляют фторид натрия (NaF). При взятии образца крови, согласно докладу экспертов ВОЗ (2006 г.), если немедленное отделение плазмы невозможно, образец цельной крови должен быть помещен в пробирку, содержащую ингибитор гликолиза, которую следует хранить во льду до выделения плазмы или проведения анализа.
Показания к исследованию
- Диагностика и мониторинг СД;
- заболевания эндокринной системы (патология щитовидной железы, надпочечников, гипофиза);
- заболевания печени;
- ожирение;
- беременность.
Особенности взятия и хранения образца. Перед исследованием необходимо исключить повышенные психо-эмоциональные и физические нагрузки.
Предпочтительно – плазма венозной крови. Образец следует отделить от форменных элементов не позднее, чем через 30 мин после взятия крови, избегать гемолиза.
Образцы стабильны не более 24 ч при 2–8 °C.
Метод исследования. В настоящее время в лабораторной практике наибольшее распространение получили ферментативные методы определения концентрации глюкозы – гексокиназный и глюкозооксидазный.
- СД 1 или 2 типа;
- диабет беременных;
- заболевания эндокринной системы (акромегалия, феохромоцитома, синдром Кушинга, тиреотоксикоз, глюкоганома);
- гемахроматоз;
- панкреатит острый и хронический;
- кардиогенный шок;
- хронические заболевания печени и почек;
- физические упражнения, сильное эмоциональное напряжение, стресс.
- Передозировка инсулина или гипогликемических препаратов у больных СД;
- заболевания поджелудочной железы (гиперплазия, опухоли), вызывающие нарушение синтеза инсулина;
- дефицит гормонов, обладающих контринсулярным действием;
- гликогенозы;
- онкологические заболевания;
- тяжелая печеночная недостаточность, поражения печени, вызванные отравлением;
- заболевания ЖКТ, нарушающие всасывание углеводов.
- алкоголизм;
- интенсивная физическая нагрузка, лихорадочные состояния.
Источник
Современные методы определения глюкозы
Герасименко В.А., к.м.н., Куриляк О.А., к.б.н.
Из архива газеты «Новости А/О Юнимед»
Определение концентрации глюкозы в крови – одно из наиболее часто выполняемых биохимических исследований в КДЛ. Причина исключительной популярности теста связана с высокой заболеваемостью сахарным диабетом. Данный тест выполняется как в условиях стационара, так и в поликлиниках. Больные сахарным диабетом вынуждены исследовать уровень глюкозы в крови в домашних условиях, поскольку без этой информации им трудно скорректировать свою диету, физические нагрузки, применение инсулина и других сахароснижающих препаратов. Исключительная важность теста и большие объемы выполняемых исследований стимулировали разработчиков к созданию различных типов приборов и методов определения концентрации глюкозы в крови.
В настоящее время существует достаточно много методов определения глюкозы. Их можно классифицировать следующим образом.
Методы определения глюкозы в сыворотке крови
— фотометрический по конечной точке
— отражательная фотометрия – сухая химия
Первые два метода крайне неудобны, токсичны и обладают низкой точностью, поэтому мы на них не будем останавливаться.
Глюкозооксидазный метод
Сегодня наибольшее распространение получили методы, основанные на использовании фермента – глюкозооксидазы. В основе метода лежит следующая реакция:
Глюкозооксидаза катализирует перенос двух водородных атомов с первого углеродного атома глюкозы на кислород, растворенный в жидком реагенте. При этом в ходе реакции образуется в эквимолярных количествах перекись водорода. Т.е. концентрация образовавшейся перекиси водорода точно равна определяемой концентрации глюкозы. Следовательно, использование глюкозооксидазной реакции, трансформировало задачу определения концентрации глюкозы в задачу определения концентрации перекиси водорода, которая, как будет показано ниже, значительно проще первой. И здесь есть несколько способов, широко используемых сегодня в лабораторной практике (см. схему).
Среди вышеперечисленных способов регистрации наибольшее распространение получил фотометрический биохимический метод, в котором молекулы перекиси водорода под действием фермента пероксидазы расщепляются с образованием активной формы кислорода – супероксид анион-радикала – О2 — , который в свою очередь окисляет хромоген, что приводит к значительному изменению спектра поглощения хромогена.
На рис. 1 и 2 показаны спектры рабочего раствора до внесения в него стандартного раствора глюкозы и после. Максимум поглощения реакционной смеси – (реактив + глюкоза) находится в области 500 нм. Соответственно, изменение оптической плотности конечной реакции на длине волны 480-520 нм пропорционально концентрации глюкозы, содержащейся в пробе.
Рисунок 1. Спектр рабочего раствора
Рисунок 2. Спектр реакционной смеси (рабочий раствор + глюкоза)
Большая популярность данного метода определения глюкозы объясняется его высокой специфичностью и простотой выполнения. Метод можно реализовать как с применением обычного фотометра (лучше специализированного биохимического фотометра типа Микролаб 540), так и с помощью автоматических биохимических автоанализаторов.
Наряду с методом фотометрирования по конечной точке, несколько лет назад появились наборы, в которых реализован кинетический метод фотометрирования. Суть метода состоит в том, что при определенном соотношении активностей глюкозооксидазы и пероксидазы, скорость образования окрашенного соединения некоторое время после внесения пробы в рабочий раствор будет пропорциональна концентрации глюкозы в пробе. Преимущество такого метода состоит в том, что результат не зависит от наличия в пробе других соединений, поскольку поглощение последних стабильно во времени. Этот метод требует применения кинетического фотометра, например Stat Fax 1904+, Stat Fax 3300, полуавтоматических анализаторов, например Clima 15, или автоматических биохимических анализаторов. Измерение концентрации глюкозы из цельной крови удобно выполнять с помощью приборов, работа которых основана на амперометрическом принципе измерения, при помощи специальных ферментных датчиков. Перекись водорода является крайне нестабильным химическим соединением и она может служить источником заряженных частиц. Именно это и используется в ферментных датчиках мембранного типа или электрохимических элементах портативных глюкометров.
Рисунок 3. Измерительная ячейка
В измерительной ячейке, сконструированной как проточная, находится измерительная камера, с одной стороны ограниченная ферментной мембраной (Рис. 3). На мембрану толщиной около 60 микрон специальным образом сорбирована глюкозооксидаза. С другой стороны мембраны к ней прижимается платиновый электрод.
Проба цельной крови (обычно 20 мкл) разводится в системном буферном растворе (эритроциты разрушаются), после чего подается по магистрали в проточную ячейку. Глюкоза, подвергается окислению под воздействием фермента глюкозооксидазы, находящейся на мембране. Образовавшаяся перекись водорода диффундирует через мембрану и окисляется далее в каталитической реакции под действием платины. Диффузия перекиси водорода на поверхность платины формирует ток, пропорциональный числу молекул Н2О2. Полученный таким образом сигнал обрабатывается прибором в соответствующее значение напряжения. Это измеренное значение пропорционально концентрации глюкозы в пробы.
В качестве примера приборов, использующих вышеописанный метод можно назвать автоматические анализаторы глюкозы Biosen (Германия). Эти приборы удобны для использования не только в стационарах, но и в поликлиниках, где анализ на глюкозу делают преимущественно из капиллярной крови.
Важным этапом в развитии методов клинической лабораторной диагностики стало появление «сухой химии». Естественно, одним из первых приложений этой технологии стала задача определения глюкозы в крови пациента. Первые приборы значительно уступали по точности традицинным лабораторным методам исследований. Однако, со временем, ряду фирм удалось разработать такие диагностические полоски и отражательные фотометры, которые обеспечили весьма высокую точность анализа. Широко популярными во всем мире в настоящее являются глюкометры One Touch и тест-полоски к ним производства компании Life Scan (США), которые удачно сочетают в себе аналитическую точность количественного ферментативного метода со скоростью и простотой «сухой химии».
Глюкометры One Touch предназначены для быстрого и точного измерения уровня глюкозы в цельной крови. Тест-полоска One Touch содержит все необходимые химические компоненты для двухэтапного глюкозооксидазного метода, включая ферменты глюкозооксидазу и пероксидазу, которые сорбированы на уникальную пористую гидрофильную мембрану. Результатом реакции является образование окрашенного комплекса. Интенсивность развившейся окраски регистрируется отражательным минифотометром.
Рисунок 4. Конструкция тест-полоски
В дополнении к этому, мембрана обладает гидрофильными свойствами, благодаря которым капля крови “притягивается” к поверхности тест-полоски при касании.Мембрана тест-полоск One Touch напоминает губку с микроскопическими порами и выполняет тройственную функцию. Она действует: 1) как резервуар, собирая необходимое количество крови, 2) как фильтр, блокируя твердый клеточный материал (эритроциты, лейкоциты и др.), 3) как гладкая оптическая поверхность, на которой измеряется отраженный свет. Последняя функция, в частности, очень важна для работы прибора. Она делает возможным считывать нижнюю часть полоски, тогда как кровь остается на верхней части тест-полоски. Соответственно, нет необходимости стирать (промокать) кровь с поверхности тест-полоски.
В состав приборов One Touch входит два специальных светодиода. Обработка развившейся окраски на тест-полоске идет следующим образом. Как только тест-полоска вставлена в прибор – происходит нулевое считывание. В этот момент на дисплее мы видим: “ЖДАТЬ”. Когда капля крови наносится на тест-полоску, плазма крови моментально сорбируется мембраной, тогда как эритроциты и излишки плазмы остаются на поверхности мембраны. После полного впитывания капли крови немедленно происходит окрашивание. Прибор регистрирует изменение величины отражения и автоматически запускает таймер. Через 45 секунд химическая реакция заканчивается, результат светоотражения обрабатывается. Окрашенный продукт реакции поглощает свет, испускаемый первым светодиодом. Форменные элементы крови и лишняя плазма также поглощают свет, излучаемый диодом. Чтобы скорректировать фоновое отражение, второе считывание производится вторым светодиодом на другой длине волны. Разность сигналов от первого и второго светодиода несет информацию о поглощении света хромогеном. Сигнал, полученный от хромогена для оценки концентрации глюкозы, соотносится со специальной калибровкой. Все приборы One Touch откалиброваны с использованием референтного метода на лабораторном анализаторе глюкозы. С помощью этой процедуры получается стандартная калибровочная кривая. Отметим, что достаточно сложно наладить производство тест-полосок, которые были бы абсолютно одинаковыми химически, в силу очень низкой концентрации реактивов. Для решения этой проблемы используется стандартная калибровочная кривая, состоящая из 16 –ти калибровочных линий. Контроль качества осуществляется сразу после производства тест-полосок, что позволяет определить, какая из калибровочных линий (от 1 до 16) может быть применена для данной тест-полоски. Это так называемый номер кода, который проставляется на упаковке тест-полосок. Эти 16 калибровочных линий также программируются в микропроцессоре прибора. Для получения оптимально точных результатов, номер кода, указанный на упаковке тест-полосок выставляется в приборе при помощи кнопки кода. Таким образом, неправильно установленный код на приборе может являться причиной ошибки измерения.
С момента появления на рынке приборов One Touch прошло большое количество клинических исследований в лабораториях России, Америки и Европы. Одно из таких исследований было проведено Эндокринологическим научным центром РАМН по заказу Российской Ассоциации Медицинской Лабораторной Диагностики. Специалисты Центра провели сравнительный анализ двух методов измерения уровня глюкозы в крови. Результаты, полученные на One Touch, сопоставлялась с данными, полученными на биохимическом анализаторе Spectrum II (Abbott Laboratories, США), реализующем гексокиназный метод определения глюкозы. Было исследовано 190 проб крови от 95 пациентов. Коэффициент корреляции результатов составил 0,98641. Коэффициент вариации в нормальном и патологическом диапазонах на глюкометре One Touch не превысил 2,5%.
Рис. 5. Корреляционная зависимость показаний “One Touch” и «Спектрум-2» (коэффициент корреляции 0,98641)
В заключении следует упомянуть и о недостатках глюкозооксидазного метода. Образующаяся перекись водорода и супероксид анион-радикал могут окислять не только хромоген, но и другие вещества, присутствующие в биологической жидкости: аскорбиновую кислоту, мочевую кислоту, билирубин. При этом, соответственно, доля перекиси, принимающая участие в окислении хромогена, снижается, что приводит к занижению результата по глюкозе. Этот метод линеен, как правило, до 20-30 ммоль/л глюкозы.В официальном отчете Эндокринологического научного центра РАМН сказано: «приборы One Touch обладают высокой точностью и правильностью, а также широким диапазоном измерений. Их можно использовать для диагностики неотложных состояний при диабете, в том числе бригадами “Скорой помощи”, поскольку эти приборы не только надежны, но и быстро дают результаты».
Гексокиназный метод
Регистрация осуществляется при длине волны 340 нм по светопоглощению НАДН. Этот метод является высокоспецифичным и не дает реакции с другими компонентами сыворотки крови. Гексокиназный метод считается референтным для определения глюкозы. Как правило, он линеен до 50 ммоль/л, что позволило его широко рекомендовать для клиник с эндокринологическими отделениями.
Из описанного разнообразия методов определения глюкозы сотрудники КДЛ могут решить для себя, какой способ определения и какой прибор выбрать:
- Методы «мокрой» биохимии, реализованные на автоматических биохимических анализаторах, обеспечат нужды лабораторий с большим потоком анализов.
- Анализаторы глюкозы типа Biosen требуют от оператора минимальных трудозатрат, так как они полностью автоматизированы и достаточно производительны (скорость от 50 до 200 проб в час).
- Для лабораторий с небольшим числом исследований, а также экспресс-лабораторий удобен специализированный биохимический фотометр Микролаб 540.
- Для бригад скрой помощи идеальное решение — глюкометры типа One Touch.
Т.о., задача КДЛ обеспечить не только быстрое, но и высокоточное определение глюкозы, на сегодняшний день вполне решаема.
Источник