Способы расчета энтропии химической реакции

Энтропия. Энергия Гиббса

Понятие энтропии

Абсолютная энтропия веществ и изменение энтропии в процессах

Стандартная энтропия

Стандартная энтропия образования

Энергия Гиббса

Стандартная энергия Гиббса образования

Энтальпийный, энтропийный фактор и направление процесса

Примеры решения задач

Задачи для самостоятельного решения

Понятие энтропии

Энтропия S – функция состояния системы. Энтропия характеризует меру неупорядоченности (хаотичности) состояния системы. Единицами измерения энтропии являются Дж/(моль·К).

Абсолютная энтропия веществ и изменение энтропии в процессах

При абсолютном нуле температур (Т = 0 К) энтропия идеального кристалла любого чистого простого вещества или соединения равна нулю. Равенство нулю S при 0 К позволяет вычислить абсолютные величины энтропий веществ на основе экспериментальных данных о температурной зависимости теплоемкости.

Изменение энтропии в процессе выражается уравнением:

где S(прод.) и S(исх.) – соответственно абсолютные энтропии продуктов реакции и исходных веществ.

На качественном уровне знак S реакции можно оценить по изменению объема системы ΔV в результате процесса. Знак ΔV определяется по изменению количества вещества газообразных реагентов Δnг. Так, для реакции

(Δnг = 1) ΔV > 0, значит, ΔS > 0.

Стандартная энтропия

Величины энтропии принято относить к стандартному состоянию. Чаще всего значения S рассматриваются при Р = 101,325 кПа (1 атм) и температуре Т = 298,15 К (25 о С). Энтропия в этом случае обозначается S о 298 и называется стандартной энтропией при Т = 298,15 К. Следует подчеркнуть, что энтропия вещества S (S о ) увеличивается при повышении температуры.

Стандартная энтропия образования

Стандартная энтропия образования ΔS о f,298 (или ΔS о обр,298) – это изменение энтропии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии.

Энергия Гиббса

Энергия Гиббса G – функция состояния системы. Энергия Гиббса равна:

Абсолютное значение энергии Гиббса определить невозможно, однако можно вычислить изменение δG в результате протекания процесса.

Критерий самопроизвольного протекания процесса: в системах, находящихся при Р, Т = const, самопроизвольно могут протекать только процессы, сопровождающиеся уменьшением энергии Гиббса (ΔG

Стандартная энергия Гиббса образования

Стандартная энергия Гиббса образования δG о f,298 (или δG о обр,298) – это изменение энергии Гиббса в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества пристутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.

Для простых веществ, находящихся в термодинамически наиболее устойчивой форме, δG о f,298 = 0.

Энтальпийный, энтропийный фактор и направление процесса

Проанализируем уравнение ΔG о Т = ΔН о Т — ΔТS о Т. При низких температурах ТΔS о Т мало. Поэтому знак ΔG о Т определяется в основном значением ΔН о Т (энтальпийный фактор). При высоких температурах ТΔS о Т – большая величина, знак Δ G о Т определяется и энтропийным фактором. В зависимости от соотношения энтальпийного (ΔН о Т) и энтропийного (ТΔS о Т) факторов существует четыре варианта процессов.

      1. Если ΔН о Т о Т > 0, то ΔG о Т
      2. Если ΔН о Т > 0, ΔS о Т о Т > 0 всегда (процесс не протекает ни при какой температуре).
      3. Если ΔН о Т о Т о Т о /ΔS о (процесс идет при низкой температуре за счет энтальпийного фактора).
      4. Если ΔН о Т > 0, ΔS о Т > 0, то ΔG о Т ΔН о / ΔS о (процесс идет при высокой температуре за счет энтропийного фактора).
Читайте также:  Пилокарпин глазные капли способ применения

Примеры решения задач

Задача 1. Используя термодинамические справочные данные, вычислить при 298,15 К изменение энтропии в реакции:

Объяснить знак и величину ΔS о .

Решение. Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

Вещество NH3(г) O2(г) (г) H2O(ж)
S о 298,

Дж/(моль·К)

192,66 205,04 210,64 69,95

В данной реакции ΔV o х.р.,298

Задача 2. Используя справочные термодинамические данные, рассчитать стандартную энтропию образования NH4NO3(к). Отличается ли стандартная энтропия образования NH4NO3(к) от стандартной энтропии этого соединения?

Решение. Стандартной энтропии образования NH4NO3 отвечает изменение энтропии в процессе:

Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

Вещество N2(г) H2(г) O2(г) NH4NO3(к)
S о 298,

Дж/(моль·К)

191,50 130,52 205,04 151,04

Стандартная энтропия образования NH4NO3(к), равная — 609,06 Дж/(моль·К), отличается от стандартной энтропии нитрата аммония S о 298(NH4NO3(к)) = +151,04 Дж/(моль·К) и по величине, и по знаку. Следует помнить, что стандартные энтропии веществ S о 298 всегда больше нуля, в то время как величины ΔS 0 f,298, как правило, знакопеременны.

Задача 3. Изменение энергии Гиббса реакции:

равно δG о 298= –474,46 кДж. Не проводя термодинамические расчеты, определить, за счет какого фактора (энтальпийного или энтропийного) протекает эта реакция при 298 К и как будет влиять повышение температуры на протекание этой реакции.

Решение. Поскольку протекание рассматриваемой реакции сопровождается существенным уменьшением объема (из 67,2 л (н.у.) исходных веществ образуется 36 мл жидкой воды), изменение энтропии реакции ΔS о о 298 реакции меньше нуля, то она может протекать при температуре 298 К только за счет энтальпийного фактора. Повышение температуры уменьшает равновесный выход воды, поскольку ТΔS о

Задача 4. Используя справочные термодинамические данные, определить может ли при 298,15 К самопроизвольно протекать реакция:

Если реакция не будет самопроизвольно протекать при 298,15 К, оценить возможность ее протекания при более высоких температурах.

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

Вещество С4Н10(г) С2Н4(г) Н2(г)
ΔG о f,298× , кДж/моль — 17,19 68,14 0
S о 298, Дж/(моль·К) 310,12 219,45 130,52

ΔG о х.р.,298 > 0, следовательно, при Т = 298,15 К реакция самопроизвольно протекать не будет.

Поскольку ΔS о х.р.,298 > 0, то при температуре Т>ΔН о /ΔS о величина ΔG о х.р.,298 станет величиной отрицательной и процесс сможет протекать самопроизвольно.

Задача 5. Пользуясь справочными данными по ΔG о f,298 и S о 298, определите ΔH о 298 реакции:

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

Вещество N2O(г) H2(г) N2H4(г) H2O(ж)
ΔG о f,298, кДж/моль 104,12 0 159,10 -237,23
S о 298, Дж/(моль·К) 219,83 130,52 238,50 69,95

ΔG о 298 = ΔН о 298 – ТΔS о 298. Подставляя в это уравнение величины ΔН о 298 и ТΔS о 298, получаем:

ΔН о 298 = –182,25× 10 3 + 298·(–302,94) = –272526,12 Дж = – 272,53 кДж.

Следует подчеркнуть, что поскольку ΔS о 298 выражена в Дж/(моль× К), то при проведении расчетов ΔG 0 298 необходимо также выразить в Дж или величину ΔS 0 298 представить в кДж/(мольK).

Задачи для самостоятельного решения

1. Используя справочные данные, определите стандартную энтропию образования ΔS о f,298 NaHCO3(к).

2. Выберите процесс, изменение энергии Гиббса которого соответствует стандартной энергии Гиббса образования NO2(г):

Источник

Стандартная энтропия вещества (простого, сложного). Расчет изменения энтропии в химической реакции

Стандартная энтропия вещества (простого, сложного).

Энтропия (S) — функция состояния, количественно характеризующая степень беспорядка системы. Принято относить к молю вещества. Это статистическая величина, поэтому её связывают с термодинамич вероятностью.

S = R*lnW [Дж/ моль*К] (ф-ла Луи Больцмана)

R-газовая постоянная =8,314 Дж/моль∙К,

W— термодинамическая вероятность (это число микросостояний, которыми может быть реализовано данное состояние макросистемы) или: число способов, которыми можно построить данную систему.

6 частиц (6 ионов):

· состояние порядка : 1,2,3,4,5,6 W=1 S=0

· состояние беспорядка : W=6! -1 =719 S>>0

S реальной системы всегда больше 0; состояние беспорядка значительно более вероятно.

Для идеального кристалла DS = 0. Δ S 0 реакции= ∑νnΔS 0 продуктов ∑νnΔS 0 исходных веществ

Для процессов с участием газообразных в-тв знак DS опр-тся соотношением газообразных молей в реакции.

Стандартная энтропия вещества – абсолютное значение энтропии вещества при стандартных условиях в любом данном агрегатном состоянии.

Ориентировочная оценка знака Δ Sреакции : можно оценить по изменению числа молей газообразных веществ в реакции, так как они вносят основной вклад в энтропию системы.

Расчет изменения энтропии в химической реакции

Связь энтропии с составом вещества

1) чем сложнее состав и строение в-ва(больше электронов, атомов, масса), тем больше энтропия. S(UU2) S(Li)

2) чем прочнее химические связи в веществе, тем меньше энтропия, тем меньше подвижность частиц. S(Сграфит)>S(Cалмаз)

3) С ростом Т перехода частиц из твердого в жидкое и далее в газообразное энтропия растёт.

4) Постулат Нернста. При Т=0 энтропия любого чистого вещества = 0, так как движение отсутствует => все вещества принимают состояние идеального кристалла.

Δ Sреакции характеризует стремление систем к наиболее вероятному состоянию, т.е к состоянию с мах энтропией

Расчет Δ S

Выводы:

1) Измерение S характеризует стремление сист к наиболее вероятному состоянию с наибольшим беспорядком (с наиб S)

2) Изменение S не является однозначным критерием возможности самопроизвольного протекания процесса.

Несамопроизвольными процессами называются те, для совершения которых требуется затрата работы извне.

Несамопроизвольный процесс приводит к уменьшению порядка в системе и характеризуется уменьшением S.

S 0 – самопроизвольный процесс

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Энтропия реакции

Энтропией реакции называется изменение энтропии ΔS, сопутствующее превращению реа­гентов в продукты реакции. Энтропию реакции аА + ЬВ = сС + dD рассчитывают по формуле:

где ΔS — энтропия реакции ; S — абсолютные значения энтропий продуктов реакции С и D и реагентов А и В; с, d, a, b — стехиометрические коэффициенты.

Энтропия S — единственная функция состояния, абсолютное значение которой можно оп­ределить для любого состояния системы. Для 1 моля вещества абсолютное значение энтропии опре­деляется по формуле: S = RlnW (3.2) где R = 8,314 Дж/(мольК) — универсальная газовая постоянная; W — термодинамическая вероятность рас­сматриваемого состояния — безразмерная величина.

В термодинамических расчётах обычно определяют стандартные энтропии реакций ΔS 0 298. Для реакции аА + bВ = сС + dD значение стандартной энтропии рассчитывают по формуле:

где S°298 — табличные значения абсолютных стандартных энтропий соединений в Дж/(моль К) — см. таб­лицу приложения, a ΔS°298 — стандартная энтропия реакции в Дж/К.

Если условия отличаются от стандартных, в практических термодинамических расчётах допуска­ется использование приближения: ΔS ≈ ΔS°298 (3.4) Выражение (3.4) отражает слабую зависимость величины энтропии реакции от условий её проведения.

Пример 3.1. Расчёт энтропии реакции, выраженной уравнением

4NH 3(г) + 5O2 (г) = 4NO(г) + + 6Н2O(г), при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и темпе­ратуры, при которых допустимо приближение (3.4), т.е ΔS773 ≈ ΔS 0 298 . Значение стандартной энтро­пии реакции, рассчитанной по формуле (3.3), равно:

1* Состояния веществ в уравнениях реакций указываются с помощью буквенных индексов: (к) — кристаллическое, (т) — твёр­дое, (ж) — жидкое, (г) — газообразное, (р) — растворённое.

2* По определению, ΔН 0 298обр простых веществ равны нулю.

3* ΔH 0 298обрО2. в формуле не фигурирует ввиду её равенства нулю.

Поскольку энтропия характеризует степень неупорядоченности системы (её хаотичность) знак изменения энтропии (знак ΔS) можно оценить по уравнению реакции. В рассмотренном примере 3.1 увеличение энтропии (ΔS>0) происходит в связи с увеличением числа молей газа: согласно уравне­нию реакции из 9 молей реагирующих газов образуется 10 молей газообразных продуктов.

Источник

Читайте также:  Способ изготовления искусственной кожи
Оцените статью
Разные способы