Способы пуска дизельных двигателей

Основные способы пуска судовых дизелей

Существует несколько способов пуска ДВС; главные из них: ручной пуск, стартерный пуск, пуск двигателя сжатым воздухом.

Вручную запускаются вспомогательные ДВС малой мощности, аварийные двигатели ( и для питания радиостанции) и главные двигатели спасательных шлюпок и небольших катеров: при помощи специального привода раскручивают коленчатый вал двигателя, при этом поршни совершают возвратно-поступательное движение; при определенной частоте вращения вала, когда температура в цилиндре становится выше температуры самовоспламенения топлива, включают топливные насосы. Многие двигатели с ручным пуском имеют декомпрессионное устройство, которое снимает компрессию в цилиндре двигателя во время разгона коленчатого вала, после чего декомпрессионное устройство отключается и включаются топливные насосы. Главное при ручном пуске — обезопасить обслуживающий персонал; с этой целью пусковые приспособления должны отключаться автоматически, как только частота вращения коленчатого вала становится больше частоты вращения рукоятки, т. е. когда двигатель начинает работать на топливе.

Суть стартерного пуска заключается в том, что коленчатый вал двигателя раскручивается электродвигателем или небольшим двигателем внутреннего сгорания, который предварительно запускается вручную (последний способ для пуска судовых дизелей не применяется). Электростартерный пуск применяется при запуске некоторых вспомогательных дизелей и главных двигателей небольших катеров, что особенно удобно при дистанционном управлении.

Разновидностью электрического пуска является пуск двигателя обратимым генератором; этот способ применяется в дизель-генераторной установке постоянного тока, когда на время пуска генератор работает как электродвигатель и раскручивает коленчатый вал дизеля. Источником электрической энергии при этом может быть аккумуляторная батарея или работающий дизель-генератор.

Запуск дизелей мощностью свыше 100 квт осуществляется, как правило, сжатым воздухом. Суть пуска дизелей сжатым воздухом заключается в следующем: в цилиндры дизеля поочередно, согласно порядку работы, через специальные пусковые клапаны направляется сжатый воздух, создающий усилие, достаточное для раскручивания коленчатого вала до пусковой частоты вращения, после чего включаются топливные насосы и некоторое время происходит параллельная работа системы пускового воздуха и системы подачи топлива, затем пусковую систему отключают и двигатель работает на топливе.

В систему пуска двигателя сжатым воздухом входят следующие устройства: воздухохранители (баллоны) сжатого воздуха, главный пусковой (маневровый) клапан, пусковой воздухораспределитель, пусковые клапаны цилиндров и трубопровод пускового воздуха.

Принципиальная схема пуска двигателя сжатым воздухом показана на рис. 80. Сжатый воздух из баллона 1 по трубопроводу 2 поступает к главному пусковому (маневровому) клапану 15 и к посту управления по трубопроводу 20, Для открытия маневрового клапана воздух от поста управления по трубопроводу 19 направляют в полость 18; в результате воздействия воздуха на поршень 17 открывается маневровый клапан 15 и пусковой воздух по магистрали 14 поступает одновременно ко всем пусковым клапанам 3; пусковой воздух действует на тарелку клапана и на разгрузочный поршень 4, площади которых равны, поэтому за счет пружины 5 пусковые клапаны остаются закрытыми.

Управляющий воздух по магистрали 12 поступает к золотниковым коробкам 9 и воздействует на золотники 10, Золотник, находящийся против косого среза кулачковой шайбы 13, преодолевает сопротивление пружины 11 и, перемещаясь вниз, открывает канал 7 для прохода управляющего воздуха к пусковому клапану. Воздействуя на поршень 6, управляющий воздух открывает пусковой клапан, и пусковой воздух из магистрали 14 поступает в цилиндр. За счет энергии пускового воздуха поршень в этом цилиндре перемещается вниз, и коленчатый вал двигателя начинает проворачиваться. От коленчатого вала вращается кулачная шайба 13. Если золотники управления всеми пусковыми клапанами расположены радиально и приводятся в действие от одной кулачной шайбы, то при ее проворачивании открывается золотник управления клапаном следующего цилиндра и т. д., согласно порядку работы цилиндров. При рядном расположении золотников каждый из них приводится в действие от своей кулачной шайбы, закрепленной на общем валу, однако принцип остается тот же. Система пуска остается включенной до тех пор, пока частота вращения коленчатого вала не станет достаточной для включения топливных насосов. Закрытие пусковых клапанов осуществляется следующим образом: кулачная шайба 13, поворачиваясь, перемещает вверх золотник 10, который сообщает надпоршневое пространство пускового клапана 3 через трубопровод 7 с каналом 8, — управляющий воздух стравливается в атмосферу, и пружина 6 закрывает пусковой клапан. После окончания пуска и закрытия главного маневрового клапана воздух из системы пуска стравливается в атмосферу через канал 16.

Источник

Пусковые устройства дизелей

Технические науки

  • Борисов Геннадий Александрович , доктор наук, профессор, профессор
  • Ичанкин Юрий Викторович , аспирант
  • Рязанский Государственный Агротехнологический Университет им. П.А.Костычева
  • НАДЕЖНОСТЬ ПУСКА ХОЛОДНОГО ДВИГАТЕЛЯ
  • ВСПОМОГАТЕЛЬНЫЙ ДВИГАТЕЛЬ
  • ПУСК
  • ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ
  • СТАРТЕР
  • ХОЛОДНЫЙ ДВИГАТЕЛЬ

Похожие материалы

Важным качеством дизельного двигателя является его приспособленность к запуску в холодном состоянии. В ГОСТ Р 54120-2010 термин «холодный двигатель», определен как: двигатель при температуре его деталей, охлаждающей жидкости, масла и топлива, отличающейся от температуры окружающего воздуха не более чем на 1°С (без учета погрешностей измерений).

Также согласно ГОСТ Р 54120-2010 стартерная система пуска должна обеспечивать необходимую для надежного пуска холодного двигателя частоту вращения коленчатого вала в соответствии с требованиями к пусковым качествам двигателей и требованиями к двигателю данного ГОСТ, с общим числом попыток пуска не менее трех [1].

При создании новых конструкций двигателей стремятся снизить его минимальную пусковую скорость вращения коленчатого вала с целью уменьшения мощности, веса, стоимости и габаритов пусковых систем, а также повысить надежность пуска.

Пуск дизеля возможен при помощи следующих способов:

  1. Ручной пуск;
  2. Электростартерный пуск;
  3. Пневмостартерный пуск;
  4. Воздушный (цилиндровый) пуск;
  5. Пуск вспомогательным поршневым двигателем;
  6. Пуск инерционным стартером.

Необходимые для пуска двигателя мощность, скорость вращения и вращающий момент пускового устройства (ПУ), находят из выражений:

л.с.,

  • P— мощность пускового устройства;
  • Mс — момент коленчатого вала двигателя ;
  • nmin— минимальная пусковая скорость вращения коленчатого вала;
  • ,85- к.п.д. зубчатой передачи;

об/мин;

  • n — скорость вращения пускового устройства;
  • i — передаточное отношение между шестерней стартера и венцом маховика двигателя;

кГм,

где M — вращающий (пусковой) момент пускового устройства.

Пуск дизелей от руки возможен для маломощных и двигателей средней мощности. Это актуально для двигателей устаревших конструкций, имеющих специальные приспособления и маломощных дизель- генераторных установок (ДГУ). Современные маломощные двигатели, устанавливаемые на легковые автомобили, коммерческую технику и малогабаритную спецтехнику, как правило, не приспособлены для ручного запуска.

Электростартерный пуск является основным способом пуска для большинства видов дизельной техники. Для воспламенения топлива нужна достаточно высокая скорость вращения коленчатого вала при пуске, это необходимо для получения достаточно большой температуры в конце хода сжатия. При этом важно чтобы сжатый воздух не успел охладиться через стенки цилиндра и камеры сгорания (КС) и чтобы утечка воздуха через компрессионные кольца заметно не влияла на давление в КС.

А в дизелях классической конструкции, скорость движения плунжера топливного насоса высокого давления (ТНВД) зависит от пусковой скорости и определяет достаточное давление впрыска топлива.

Момент сопротивления вращению и собственные пусковых качества двигателя — это два основных фактора влияющих на подбор стартера по пусковой мощности. Большую мощность стартеров дизельных двигателей определяют возросший крутящий момент, высокие степень сжатия и минимальная скорость вращения. А повышение напряжения до 24 вольт позволяет получить большую мощность электродвигателя стартера при меньших размерах. При напряжении 12 вольт, была бы слишком большая сила тока в цепи электродвигателя стартера, что привело бы к увеличению его габаритов и емкости аккумуляторных батарей. Сопротивление обмоток стартера обычно очень низкое и не превышает 1 мОм.

Читайте также:  Способы уменьшения погрешностей трансформаторов тока

Рис. 1. Характеристики электродвигателя с последовательным возбуждением

Пусковому (начальному) режиму стартера соответствуют следующие условия: момент пуска- nст=0, электродвигатель потребляет максимальный ток короткого замыкания Iк.з., вращающий момент достигает максимума. А пусковая частота вращения коленчатого вала дизельных двигателей находится в пределах 150-250 об/мин, что в 2 – 3 раза больше, чем у бензиновых.

Максимальный крутящий момент Mвр развивается при малой частоте вращения якоря. (Рис.1.) При этом сила тока в обмотке электродвигателя может достигать наибольшего значения и составлять 200- 900 А, в зависимости от модели стартера.

По мере увеличения частоты вращения якоря, сила тока в обмотках уменьшается и соответственно уменьшается момент на валу якоря. Такой закон изменения крутящего момента наиболее благоприятен для пуска двигателя, так как в начале проворачивания коленчатого вала момент сопротивления наибольший [2].

Полезная мощность стартера P1 (л.с.):

  • меньше электромагнитной на величину механических и магнитных потерь: Р1= Рэл— Рмех— Рмагн;
  • подсчитывается по формуле: , где M1 — вращающий момент, кГм;
  • число оборотов якоря в минуту.
  • равна нулю при заторможенном якоре, когда n1 =0, и при холостом ходе, когда M1=0 [3].

Разделив полезную мощность стартера на угловую скорость вращения якоря ω, найдем полезный момент стартера: [13]

.

Согласно ГОСТ Р 54120-2010 термин «надежный пуск двигателя» определяется как: «Пуск двигателя, оборудованного всеми навесными агрегатами, на основном топливе не более чем за три попытки пуска «холодного двигателя» и не более чем за две попытки пуска «горячего двигателя» и двигателя после «тепловой подготовки».

Надежность электрического пуска сильно зависит от начальной скорости вращения коленчатого вала, которая в свою очередь определяется максимальным вращающим моментом Mвр и пусковой мощностью стартера Pпол. Повысить эти параметры можно увеличением силы тока в цепи и напряжения на зажимах стартера. А достичь этого возможно лишь снизив падение напряжения на выводах аккумуляторной батареи, уменьшив её внутреннее сопротивление путем увеличения ёмкости и температуры электролита, а также применением контактных соединительных проводов малого сопротивления и поддерживая стартер в исправном техническом состоянии.

На данный момент на отечественных дизельных тракторах и грузовых автомобилях применяют стартеры следующих моделей:

Таблица 1. Технические данные некоторых типов стартеров [5]

Источник

Способы пуска дизельных двигателей. Пусковые двигатели и их технические характеристики.

Рабочие пусковые жидкости, используемые для обеспечения работы машин, их виды, основные свойства и применение.

Способы пуска дизельных двигателей. Пусковые двигатели и их технические характеристики.

Пусковые жидкости. Пусковую жидкость «Холод Д-40» использу­ют при температуре окружающего воздуха ниже -20 «С. Данная жид­кость представляет собой смесь эфира, спирта и моторного масла. Смесь подают во впускную трубу двигателя через специальное уст­ройство, устанавливаемое на тракторе во время пуска. Пуск дизеля возможен, если прокручивать его коленчатый вал с частотой 1 с -1 .

Свеча накаливания. Данное приспособление используют при температуре воздуха не ниже -15 °С и включают перед пуском дизеля. Свеча состоит из корпуса 2 (рис. 1, а), на котором ук­реплены стержень 4 и спираль 3 накаливания. Свечу однопро-водного исполнения устанавливают во впускной трубе дизеля. Спираль нагревается электрическим током от аккумуляторной батареи.

Электрофакельный подогреватель. Для увеличения интенсивнос­ти нагрева воздуха, проходящего во впускной трубе 9 (рис.7, б), служит электрофакельный подогреватель. Его спираль J накалива­ния расположена во впускной трубе 9, а над ней находится элек­тромагнитный клапан 7, закрывающий топливоподводящий ка­нал А. Через этот канал из дозирующего устройства подается ди­зельное топливо, прошедшее тонкую очистку.

Подогреватель работает следующим образом. При повороте ключа 12 из нейтрального положения I в положение II электри­ческий ток аккумуляторной батареи поступает к спирали накали­вания и контрольному элементу. Через 30. 35 с, когда спираль раскалится (температура около 950 °С), ключ переводят в поло­жение III. Спираль остается под током, одновременно включают­ся стартер и электромагнитный клапан 7. Последний открывает топливоподводящий канал А, и топливо, поступая через него, по­падает на раскаленную спираль и воспламеняется. Проходящий по впускной трубе 9 воздух нагревается от пламени и подогре­тым поступает в цилиндры. После пуска дизеля ключ возвраща­ют в исходное положение, подача электрического тока к спира­ли прекращается, а электромагнитный клапан закрывает топли­воподводящий канал.

Жидкостный подогреватель. Для работы в зимних условиях многие двигатели жидкостного охлаждения оборудуют пусковыми жидкостными подогревателями. Пусковой жидкостный подогре­ватель состоит из котла 12 (рис. 2), кожуха 13 поддона, топлив­ного бака 3, электровентилятора 9, электромагнитного клапана 4, соединительной арматуры и пульта управления. Последний пред­ставляет собой металлическую коробку, в которой находятся конт­рольная спираль 6, включатель 8 и переключатель 7 для включе­ния электровентилятора и электромагнитного клапана.

В камеру сгорания котла топливо (бензин низких сортов) по­падает самотеком из бака 3. Поступление топлива дозируется ре­гулировочной иглой 5 электромагнитного клапана 4. Воздух пода­ется электровентилятором Р. Смесь воспламеняется свечой 11 на­каливания, о работе которой судят по накалу контрольной спира­ли 6. Воду заливают в котел подогревателя через горловину 2.

Пуск подогревателя в работу проводят в определенной после­довательности согласно инструкциям по эксплуатации трактора. Факел, образующийся в котле 12, подогревает его полость, связанную с водяной рубашкой двигателя. Одновременно горячие газы направляются в кожух 13 и подогревают масло в поддоне двигате­ля. Вода в системе охлаждения двигателя подогревается до темпе­ратуры 60. 70°С, а масло в поддоне двигателя — до 40. 50°С. Пусковой подогреватель обеспечивает надежный пуск двигателя в течение 20 мин.

Если температура окружающего воздуха ниже -15 °С, то вмес­то холодной воды в систему рекомендуется заливать горячую воду или антифриз. При использовании системы пускового обогрева необ­ходимо помнить, что работа подогревателя без воды в котле более 1,5 мин запрещается. Неполное заполнение котла водой приводит к его перегреву и выходу из строя. Нельзя пускать горячий по­догреватель без продувки котла электровентилятором. Запреща­ется прогревать двигатель в закрытых помещениях с плохой вен­тиляцией во избежание отравления образующимся в факеле угар­ным газом.

Когда жидкость удаляют из системы охлаждения двигателя, не­обходимо открыть и спускной краник подогревателя. При перехо­де на летний период эксплуатации пусковой подогреватель следу­ет снять с двигателя.

Способы пуска дизельного двигателяТопливовоздушная смесь в дизельном двигателе воспламеняется в результате нагревания воздуха в цилиндрах. Чтобы создать в цилиндрах температуру, при которой горючая смесь самовоспламеняется, необходимо быстро вращать вал двигателя. Минимальная частота вращения двигателя, при которой осуществляется его надежный пуск, называется пусковой частотой вращения. Пусковая частота вращения коленчатого вала дизельного двигателя находится в пределах 150—250 об/мин в зависимости от температуры окружающего воздуха. При медленном вращении коленчатого вала часть воздуха уходит из цилиндра в картер через неплотности в поршневых кольцах. Вращать коленчатый вал дизельного двигателя с пусковой частотой вращения вручную невозможно, так как у него велика степень сжатия. Поэтому для запуска дизельных двигателей применяют специальные пусковые устройства. На современных двигателях применен электрический способ пуска. Коленчатый вал двигателя вращается специальным электродвигателем постоянного тока — стартером, который питается от аккумуляторной батареи.

Рис. 3. Схема пускового устройства:

1 — коленчатый вал пускового двигателя, 2 — шестерни, 3 — рычаг сцепления, 4 — вал механизма передачи, 5,6 — ведомый и ведущий диски сцепления. 7 —зубчатый венец маховика, 8 — пусковая шестерня, 9 — рычаг включения пусковой шестерни

Читайте также:  Ибупрофен инструкция по применению таблетки взрослым при температуре способ применения

Шестерня, сидящая на валу стартера, на время пуска вводится в зацепление с зубчатым венцом маховика. После запуска дизельного двигателя пусковая шестерня автоматически выходит из зацепления с маховиком. Электрический способ пуска удобен в эксплуатации, но обладает малым запасом энергии, что ограничивает число возможных попыток пуска.

Способ пуска с помощью пускового бензинового двигателя. Этот способ запуска надежнее, так как позволяет вращать вал дизельного двигателя длительное время. Кроме того, отводимую от пускового двигателя водой и газами теплоту используют для прогрева дизеля, облегчая его запуск.

Пусковое устройство (1) состоит из пускового двигателя и механизма передачи. От коленчатого вала 1 пускового двигателя усилие передается на муфту сцепления и вал 4 механизма передачи через шестерни 2. Пусковая шестерня 8 рычагом 9 может вводиться в зацепление с зубчатым венцом 7 маховика и передавать вращение на коленчатый вал дизельного двигателя. После запуска дизеля пусковая шестерня выводиться из зацепления с венцом маховика специальным автоматом выключения.

Для облегчения пуска дизельного двигателя в холодное время года применяют различные вспомогательные устройства. Одни из них служат для уменьшения сопротивления при проворачивании коленчатого вала (декомпрессионные устройства), другие— для облегчения возникновения первых вспышек горючей смеси в цилиндре (предпусковой подогреватель воздуха, свечи накаливания, подогрев воды в системе охлаждения).

Пусковой двигатель ПД-10У одноцилиндровый, карбюраторный, двухтактный. Мощность пускового двигателя 10 л. с. (7,35 кВт). Он имеет герметично закрытую кривошипную камеру. Отличительной особенностью двигателя является отсутствие на нем клапанов. Вместо клапанов в нижней части цилиндра выполнены окна: выпускное окно служит для выпуска отработавших газов, через продувочное окно горючая смесь попадает в цилиндр двигателя из кривошипной камеры; впускное окно, необходимое для засасывания в кривошипную камеру горючей смеси из карбюратора. Окна открываются и закрываются поршнем при его движении.

Основные механизмы и системы пускового двигателя, их устройство и принцип работы. Назначение, устройство, принцип работы и регулировки карбюратора и регулятора частоты вращения коленчатого вала пускового двигателя Схема передачи крутящего момента пускового двигателя к коленчатому валу дизеля.

Устройство двигателя. Пусковой двигатель ПД-10У (SO) представляет собой унифицированную конструкцию и предназначен для установки на многие дизельные двигатели отечественного производства.

Основанием пускового двигателя является чугунный картер 12, который состоит из двух половин. Обе половины плотно прижаты друг к другу шлифованными плоскостями и образуют герметически закрытую кривошипную камеру. Картер двигателя «сухой», т. е. в него не заливают масло.

На картере закреплен цилиндр 2, отлитый из чугуна заодно с водяной рубашкой. В стенках цилиндра имеются три пары окон — впускных, выпускных и продувочных. Впускные окна сообщаются с карбюратором 9, выпускные — с выхлопным патрубком 3, а продувочные — с кривошипной камерой. На цилиндре закреплена чугунная головка 4. Между головкой и цилиндром установлена прокладка. Водяные рубашки головки и цилиндра пускового двигателя сообщаются между собой и с водяной рубашкой дизельного двигателя. В резьбовые отверстия головки ввернуты свеча зажигания б и заливной краник 5.

Поршень 8 двигателя изготовлен из алюминиевого сплава. На нем установлены два компрессионных кольца, которые от проворачивания фиксируются в замках штифтами. Поршень при сборке с цилиндром устанавливают меткой в сторону выпускных окон. Поршневой палец плавающего типа закреплен от перемещения в поршне стопорными кольцами.

Коленчатый вал 11 с шатуном представляет единый неразборный узел. Нижняя головка шатуна неразъемная. Внутри нее помещено два ряда роликов, в которых смонтирован палец (шатунная шейка) коленчатого вала. Палец и полуоси коленчатого вала запрессованы в отверстия щек, изготовленных заодно с противовесами.

Полуоси коленчатого вала вращаются в роликовых подшипниках, установленных в картере. Концы полуосей уплотнены сальниками. На задней полуоси коленчатого вала укреплен маховик 1, на котором имеется канавка для наматывания пускового шнура. На ободе маховика нарезан зубчатый венец. С ним вводят с зацепление шестерню электрического стартера СТ-350Б. К картеру маховика крепят стартер.

На передней полуоси коленчатого вала закреплена шестерня. От шестерни 4 (3) коленчатого вала через промежуточную шестерню 7 приводятся во вращение шестерня 3 привода магнето, шестерня б привода регулятора и шестерня сцепления передаточного механизма. Шестерни привода магнето при сборке устанавливают по меткам. Со стороны шестерен к картеру через промежуточную плиту крепят регулятор и магнето 8.

Пусковой двигатель не имеет собственных систем охлаждения и смазочной. Его система охлаждения общая с дизельным двигателем. Детали кривошипно-шатунного механизма пускового двигателя смазывают маслом, которое поступает в картер вместе с горючей смесью. Шестерни двигателя смазываются дизельным маслом. Его заливают в передаточный механизм через отверстие картера, закрываемое пробкой 5. В нижней части картера двигателя имеется канал, в резьбовую часть которого ввернута пробка 1. Канал соединен с кривошипной камерой и используется для удаления из нее скопившегося конденсата масла при пуске двигателя.

Рис. 4. Пусковой двигатель:

1 — маховик, 2 — цилиндр, 3 — выхлопной патрубок, 4 — головка цилиндра, 5 — заливной краник, 6 — свеча зажигания, 7 — патрубок для отвода воды, 8 — поршень, 9 — карбюратор, 10 — регулятор, И — коленчатый вал, 12 — картер

Рабочий процесс двигателя. В двухтактном двигателе рабочий цикл совершается за два хода поршня. При движении вверх поршень 4 (2) перекрывает выпускное окно 2 в цилиндре, в результате чего происходит сжатие горючей смеси. Одновременно под поршнем создается разрежение и из карбюратора через впускное окно 5 цилиндра горючая смесь засасывается в кривошипную камеру 1.

При подходе поршня к ВМТ (2, 6) в свече зажигания б проскакивает электрическая искра, и горючая смесь в цилиндре воспламеняется. Под давлением газов, образовавшихся от сгорания горючей смеси, поршень перемещается вниз, совершая рабочий ход. Рабочий ход заканчивается в тот момент, когда открывается выпускное окно и начинается выпуск отработавших газов через выхлопную трубу наружу.

В конце второго такта поршень открывает окно продувочного канала 7, и горючая

Рис. 5. Схема работы пускового двигателя:

а— первый такт, б — начало второго такта, в — конец второго такта; 1 — кривошипная камера, 2 — выпускное окно, 3 — цилиндр, 4 — поршень, 5 — впускное окно, 6 — свеча зажигания, 7 — продувочный канал

смесь из кривошипной камеры нагнетается в цилиндр, вытесняя из него отработавшие газы (2, в). В цилиндре происходит продувка и одновременно наполнение свежей горючей смесью. При этом горючая смесь частично вылетает вместе с отработавшими газами. Двигатели с описанным рабочим процессом называют двигателями с кривошипно-камерной продувкой.

Система питания. В систему питания входят топливный бак с фильтром-отстойником, карбюратор с воздухоочистителем и регу­лятор.

Процесс приготовления горючей смеси вне цилиндра двигате­ля называют карбюрацией, а прибор, в котором происходит этот процесс, — карбюратором. Этот процесс основан на принципе пульверизации — жидкость под действием разрежения вытекает из распылителя (трубки) и разбрызгивается (распыляется) возду­хом на мельчайшие частицы.

Беспоплавковый карбюратор включает в себя кор­пус 1 (рис. 6, а), крышку 77, диафрагму 12, установленную меж­ду ними, жиклер-распылитель 4, дроссельную 2 и воздушную 8 за­слонки.

С помощью диафрагмы регулируется поступление топлива в карбюратор и поддерживается определенный уровень топлива в распылителе.

Полость над диафрагмой служит камерой для топлива. Камера Б под диафрагмой постоянно сообщается с атмосферой через отверс­тие. Из бачка топливо поступает через штуцер 3, сетчатый фильтр и седло 16 клапана в полость над диафрагмой. Поступление топлива регулируется клапаном 75 (рис. 6, б), который находится на пра­вом конце качающегося рычажка и прижат к седлу пружиной 18. Левый конец рычажка опирается на диафрагму в центре.

Читайте также:  Экономическое развитие предприятия может осуществляться следующими основными способами

Для предпускового обогащения горючей смеси диафрагму мож­но прогнуть принудительно, нажав на кнопку 13 утопителя, кото­рый размещен в нижней части карбюратора. При этом диафрагма прогнется вверх и топливный клапан 75 откроется. Топливо за­полнит полость над диафрагмой и будет вытекать в смесительную камеру через жиклер-распылитель.

В главную дозирующую систему в карбюраторе входят жиклер-распылитель и смесительная камера, которая занимает среднюю часть корпуса. Во время работы двигателя при нагрузке воздуш­ная 8 и дроссельная 2 заслонки открыты. Когда поршень переме­щается вверх, воздушный поток с большой скоростью проходит из атмосферы в картер пускового двигателя через смесительную ка­меру карбюратора. Над распылителем создается разрежение, топ­ливо фонтаном выходит из него и, распиливаясь в воздушном по­токе, поступает в картер двигателя.

При работе двигателя по мере расхода топлива разрежение из смесительной камеры передается в камеру Аи диафрагма выгибается вверх. Один конец качающегося рычажка 14, расположенный в центре диафрагмы, также перемещается вверх, а другой — вниз и отводит клапан 15 от седла, открывая доступ топлива в карбю­ратор. После того как полость над диафрагмой заполнится топли­вом, давление с обеих сторон диафрагмы выровняется и диафраг­ма под давлением пружины 18 возвратится в исходное положение. Клапан закроет отверстие, через которое топливо поступало в кар­бюратор.

Минимальную порцию смеси, подаваемой на холостом ходу двигателя, регулируют упорным винтом 5, который ограничивает величину закрытия дроссельной заслонки, а качество смеси — вин­том 7.

При пуске двигателя воздушную заслонку 8 прикрывают. Бла­годаря этому в смесительной камере образуется сильное разреже­ние и топливо большими порциями поступает одновременно из обоих жиклеров 4 и 19.

Между карбюратором и цилиндром двигателя установлена про­кладка.

Однорежимный регулятор частоты вращения пусково­го двигателя — шариковый, центробежного типа, предназначен для поддержания номинальной частоты вращения коленчатого вала. Его основные детали — корпус, вал с ведущим диском, пру­жина и шариковые грузики (шарики).

Корпус 6 (рис. 9.5) регулятора через промежуточную плиту при­креплен к картеру двигателя. Вал 9 вращается вместе с ведущим диском 10. В его прорезях помещены шарики, зажатые между упор­ной шайбой 12 и конусной тарелкой подвижного диска 8. Послед­ний прижимается к шарикам пружиной 3 через двуплечий рычаг 5. На оси 7 жестко закреплен наружный рычаг 2 регулятора, кото­рый соединен с тягой 1.

Когда двигатель не работает, подвижной диск под действием пружины перемещается в крайнее левое положение, а тяга 1 уп­равления дроссельной заслонкой — в крайнее правое. Дроссель­ная заслонка при этом открыта полностью. Во время работы дви­гателя шарики расходятся в радиальном направлении под действи­ем центробежной силы и преодолевают силу давления пружины. В результате шарики перемещают подвижной диск вправо, а тягу — влево, прикрывая дроссельную заслонку.

При установившейся нагрузке сила пружины уравновешивается центробежной силой шариков. Если нагрузка двигателя увеличива­ется, то частота вращения регулятора начинает снижаться. В этом случае центробежная сила шариков ослабевает и под действием пружины через двуплечий рычаг тяга 1 движется вправо, открывая дроссельную заслонку. В результате частота вращения коленчатого вала возрастает до прежнего значения. С уменьшением нагрузки она временно увеличивается. Тогда возрастает центробежная силашариков, которая, преодолевая силу пружины, переместит тягу 1 влево. При этом дроссельная заслонка прикроется и частота вра­щения коленчатого вала уменьшится до номинальной.

Механизм передачи пускового устройства необходим для передачи вращения от пускового двигателя к коленчатому валу дизельного двигателя и для автоматического отключения пускового двигателя, когда дизельный двигатель завелся. Механизм передачи (4, о) смонтирован в специальном корпусе 2, на котором сверху установлен пусковой двигатель. Вал 15 механизма передачи вращается в корпусе на двух шариковых подшипниках. На переднем конце вала находится сцепление, а на заднем — автомат / выключения. Сцепления пусковых устройств двигателей имеют принципиально различную конструкцию.

Сцепление пускового двигателя многодисковое, сухое, постоянно-замкнутого типа. Оно состоит из ведущего барабана 5, ведущих 7 и ведомых дисков, пружин 8 и выжимного механизма. Ведущий барабан сцепления закреплен шестью болтами на ведущей шестерне 4. На наружной цилиндрической части ведущего барабана выполнены восемь прямоугольных вырезов, в которые входят выступы двух ведущих фрикционных дисков, установленных внутри барабана.

Между ведущими дисками, а также впереди и сзади их расположены ведомые стальные диски. Внутри они имеют шлицевые отверстия, с помощью которых помещены на шлицы вала 15, а средний и задний ведомые диски могут перемещаться вдоль вала. Передний ведомый диск 9 закреплен на валу неподвижно. В нем и в среднем ведомом диске выполнено по десять отверстий, равномерно расположенных по окружности. В задний ведомый диск б ввернуты десять шпилек, на которые надеты пружины 8. Одним концом пружины упираются в гайки, навернутые на шпильки, а другим — в дно стаканчиков, уложенных в отверстиях переднего ведомого диска. Буртики стаканчиков плотно прилегают к переднему диску. Под действием усилия десяти сжатых пружин задний ведомый диск сближается с передним и плотно прижимает все диски друг к другу.

Диски разъединяются под действием выжимного механизма.

Он состоит из выжимного 16 и упорного 12 башмаков. Упорный башмак закреплен бол-

Рис. 7.Механизм передачи пускового устройства двигателя:

а—устройство, б — сцепление включено, б — сцепление выключено; / — автомат выключения, 2 — корпус подшипников, 3— пусковой двигатель, 4— шестерня, 5 — ведущий барабан, б—задний (подвижный) ведомый диск, 7 — ведущий диск, 8 — пружина, 9 — передний (неподвижный) диск, 10— палец, 11— рычаг, 12 — упорный башмак, 13 — валик, 14 — крышка, 15 — вал, 16 — выжимной башмак, П — колодка, 18 — нажимной диск, 19 — пружина

тами на крышке 14. Выжимной башмак шпонкой закреплен на валике 13, на другом конце которого жестко закреплен рычаг 11 сцепления. С помощью рычага выжимной башмак можно повернуть относительно упорного. На торцах башмаков, обращенных друг к другу, имеются высыпи, обработанные по винтовой поверхности. При скольжении по винтовой поверхности упорного башмака выжимной диск перемещается в осевом направлении, и валик 13 торцом нажимает на шарик центровочного штифта, установленного в центральное отверстие нажимного диска 18. Последний по краям имеет десять выемок, которыми он входит в кольцевые прорези гаек. Перемещаясь вдоль оси, нажимной диск через гайки и соединенные с ними шпильки отодвигает задний (подвижный) ведомый диск 6 от переднего Я и ведущие диски проскальзывают относительно ведомых.

Отжатие заднего ведомого диска не обеспечивает полное разъединение между собой дисков. Для полного разъединения ведущих и ведомых дисков и быстрой остановки вала при выключении сцепления выжимной механизм оборудован тормозом. Он состоит из двух колодок 17, смонтированных в крышке. Каждая колодка снабжена фрикционной на-

Рис. 8.

кладкой и одним концом соединена шарнирно с пальцем 10, закрепленным в крышке. Между колодками установлены две пружины, которые стремятся переместить колодки к центру. Заодно с колодкой изготовлен кулачок, который опирается на наружную поверхность выжимного башмака.

До выключения сцепления тормозные колодки опираются кулачками на цилиндрическую поверхность выжимного башмака (4, б) и находятся в разведенном состоянии. Когда выключают сцепление, рычагом 11 поворачивают выжимной башмак 16 (4, в), и кулачки колодок сходят с его цилиндрической поверхности на выфрезерованную.

Рис. 9.

Рис. 10.

Дата добавления: 2016-11-26 ; просмотров: 5397 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Оцените статью
Разные способы