Способы пуска асинхронного двигателя с короткозамкнутой обмоткой ротора

Содержание
  1. Несколько способов пуска асинхронного двигателя
  2. Прямой пуск
  3. Пуск с понижением напряжения
  4. Соединение ротора с реостатом во время включения
  5. Запуск в ход однофазного мотора
  6. Применение сопротивления при пуске
  7. Использование конденсатора
  8. Трехфазный асинхронный двигатель
  9. Трехфазный асинхронный двигатель с короткозамкнутым ротором
  10. Конструкция асинхронного электродвигателя
  11. Принцип работы. Вращающееся магнитное поле
  12. Концепция вращающегося магнитного поля
  13. Действие вращающегося магнитного поля на замкнутый виток
  14. Короткозамкнутый ротор асинхронного двигателя
  15. Скольжение асинхронного двигателя. Скорость вращения ротора
  16. Звезда и треугольник
  17. Обозначение выводов статора трехфазного электродвигателя
  18. Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента
  19. Управление асинхронным двигателем
  20. Прямое подключение к сети питания
  21. Нереверсивная схема
  22. Реверсивная схема
  23. Плавный пуск асинхронного электродвигателя
  24. Частотное управление асинхронным электродвигателем
  25. Трехфазный асинхронный двигатель с фазным ротором
  26. Конструкция АДФР
  27. Фазный ротор
  28. Статор АДФР
  29. Обозначение выводов вторичных обмоток трехфазного АДФР
  30. Пуск АДФР

Несколько способов пуска асинхронного двигателя

Существуют требования, которым должен отвечать запуск асинхронного двигателя. Во-первых, это отсутствие необходимости в использовании специальных устройств. Во-вторых, это сведение пусковых токов до минимума и пускового момента (далее Мпуск) до максимума. Рассмотрим способы пуска асинхронного двигателя, удовлетворяющие выдвинутым требованиям.

Прямой пуск

Подразумевает подключение намоток статора к электросети без «посредников». Подходит моторам с короткозамкнутым ротором. Это двигатели небольшой мощности, у которых при подключении напрямую к электросети статорных обмоток, образующимися пусковыми токами не вызывается перегрев, способный вывести технику из строя.

В асинхронных двигателях соотношение индуктивности обмоток к их сопротивлению (L/R) небольшое. И оно тем меньше, чем меньше мощность устройства. Поэтому во время запуска образующийся свободный ток быстро затухает, и им можно пренебречь. Брать в учет будет только ту силу тока, которая установилась в результате переходного процесса.

Ниже на рисунке (а) представлена схема магнитного пускателя, обозначенного буковой К. Технически это электромагнитный выключатель, часто применяемый при запуске электродвигателей с короткозамкнутым ротором. Он необходим для автоматического разгона по естественной механической характеристике (обозначим М) от начала запуска (точка П) до момента, когда М станет равным моменту сопротивления (Мс).

На картинке (б) представлен график зависимости пускового тока от начального момента. Исходя из него, ускорение разгона равно разности абсцисс графиков М и М(с). В таком случае, если Мпуск будет меньше Мс, то разогнаться у электродвигателя не получится. Чтобы получить оптимальное для разгона значение Мпуск для мотора с короткозамкнутым ротором используйте формулу (коэффициент скольжения s равен единице):

Отношение Мпуск к номинальному (Мном) – это величина, определяемая как кратность начального момента. Обозначается kпм. Коэффициент для двигателей с короткозамкнутым ротором входит в диапазон от 1 до 1,8 и устанавливается ГОСТом.

Пример. Если kпм=1,4, а Мном=5000 Н*м, то прямой запуск должен начинаться с Мп = 7000 Н*м.

Внимание! Нельзя превышать установленные ГОСТом нормы. Это ведет к повышению активного сопротивления на вращающемся элементе мотора.

Прямой запуск двигателя обладает преимуществами:

  • Дешевизна;
  • Простота;
  • Минимальный нагрев обмоток при запуске.
  • Величина Мпуск составляет до 300% от Мном;
  • Пусковой ток составляет до 800% от номинального (смотрите графики снизу).

Даже с перечисленными недостатками прямой запуск остается наиболее предпочтительным для асинхронных электродвигателей с короткозамкнутым ротором, т.к. обеспечивает высокие энергетические показатели.

Пуск с понижением напряжения

Подходит для запуска электродвигателя высокой мощности, но так же оптимален для аналогов средней, если напряжение в рабочей сети не позволяем разогнать мотор с помощью прямого пуска.

Для понижения напряжения существует три способа:

  1. Переключение намоток статора с треугольника (нормальная схема) на звезду (пусковая схема). Запуск начинается со звезды, а при достижении номинальной частоты происходит переключение на треугольник. При этом напряжение, питающее фазы статорных обмоток, падает в 1,73 раз. Это позволяет уменьшиться во столько же раз фазным токам, а линейные сокращаются втрое.
  2. Запуск с добавочным сопротивлением, приводящим к падению вольтажа на статорной обмотке (рисунок а). На момент пуска в электроцепь включают реакторы или резисторы (реактивное и активное сопротивление соответственно).
  3. Пуск с подключением через трансформатор понижающего типа с несколькими автоматически переключаемыми ступенями (рисунок б).

Главное преимущество – возможность разгона двигателя почти при том же напряжении, которое необходимо для нормальной работы. К недостаткам относится лишь падение Мп и Ммакс (максимальный момент). Эти величины прямо пропорционально зависят от напряжения: чем меньше Вольт, тем меньше моменты. Поэтому с нагрузкой мотор не запустится.

Соединение ротора с реостатом во время включения

Метод подходит для включения в работы моторов с фазным ротором. Если роторная цепь включает в себя реостат, то активное сопротивление повышается. При этом точка К на рисунке а ниже перемещается ближе к О и обозначается К`. Это не приводит к уменьшению Ммакс, зато обеспечивает повышение Мпуск. Вместе с этим критическое скольжение увеличивается, и зависимость момента от s смещается к зоне больших скольжений. Число же оборотов смещается в зону меньших вращательных частот (рисунки б и в).

Обычно реостат, используемый для пуска мотора, имеет от 3 до 6 ступеней (смотрите рисунок а ниже). Пусковое сопротивление плавно уменьшается, что обеспечивается большой Мпуск. Изначально мотор приводится в ход по четвертой характеристике, проиллюстрированной на рисунке б. Она соответствует сопротивлению запускающего реостата и обеспечивает максимальную пусковую мощность.

Вращающий момент (Мвр) уменьшается с ростом оборотов. При некотором минимальном значении необходимо отключить часть реостата, чтобы Мвр возрос снова до максимального (смотрите третью характеристику). Но обороты растут, поэтому Мвр снова уменьшается. Тогда отключается еще одна часть реостата, и начинается работа по второй характеристике. Когда реостат двигателя с фазным ротором отключают вовсе, пусковой процесс завершается. Мотор продолжает работу по характеристике 1.

Читайте также:  Реферат закаливание организма способы закаливания

Запуск в ход таким методом характеризуется изменением Мвр от максимального до минимального значения. Сопротивление в данном случае уменьшается ступенчато по ломаной кривой линии (выделена жирным на графике). Выключение частей реостата осуществляется автоматически или вручную.

Преимущество запуска электродвигателя с фазным ротором с использованием реостата заключается в возможности включать его при Мпуск, близком к Ммакс. Пусковые токи при этом минимальны. Изменение силы тока проиллюстрировано на рисунке в.

Недостатков хватает. Во-первых, это сложность включения. Во-вторых, это необходимость использования совсем не дешевых моторов с фазным ротором. Характер работы хуже, чем у аналогов с короткозамкнутым ротором при мощности одинакового значения – это третий минус. Это объясняет, почему электродвигатели с фазным ротором используют преимущественно в случае возникновения сложностей с запуском других двигателей.

Запуск в ход однофазного мотора

Для включения в работу асинхронного двигателя с питанием от однофазной сети используют вспомогательную намотку. Она должна лежать перпендикулярно относительно рабочей статорной намотки. Но для создания вращающегося магнитного поля необходимо соблюдение еще одного условия. Это сдвиг по фазе тока, протекающего по вспомогательной намотке, относительного тока, возникающего в рабочей обмотке.

Для обеспечения сдвига фаз в момент подключения к однофазной сети в электроцепь вспомогательной обмотки включают специальный элемент. Это может быть резистор, конденсатор или дроссель. Но распространенными элементами являются только первые два.

После разгона мотора до значения частоты, равной установившейся, дополнительную намотку выключают. Это можно сделать вручную или автоматически. В начале двигатель работает по двухфазной, а после установления частоты – по однофазной характеристике.

Применение сопротивления при пуске

Метод применим для асинхронных двигателей, подключаемых к однофазной сети, и имеющих первичную дополнительную обмотку с короткозамкнутым ротором. Так называют мотор с расщепленной фазой, электроцепь которого имеет высокое активное сопротивление.

Чтобы пустить в ход двигатель, питаемый от однофазной сети, необходим пусковой резистор, соединяемый последовательно с дополнительной намоткой. Тогда сдвиг фаз составляет 30 градусов. Этого хватает для разгона. Ниже представлена схема, согласно которой достигается омический сдвиг фаз.

Вместо резистора можно применить дополнительную обмотку высокого сопротивления, но низкой индуктивности. В этом случае намотка имеет мало витков, которые выполняются из провода меньшего сечения в отличие от того, что используется для рабочей намотки.

В России с конвейера выходят моторы, подключаемые к однофазной сети, оснащенные резистором для сдвига фаз. Их мощность варьируется в диапазоне 18-600 Вт. Двигатели рассчитаны для сетей с напряжением 127, 220 или 380 Вольт и переменным током с частотой 50 Гц.

Использование конденсатора

Метод отличается от предыдущего тем, что мотор с расщепленной фазой при подключении к однофазной линии, имеет высокое сопротивление только в момент запуска.

Для обеспечения наибольшего значения Мпуск необходимо круговое и вращающееся магнитное поле. Для этого токи в рабочей и дополнительной обмотках смещают на 90 градусов. Такое смещение может обеспечить только конденсатор. Его использование помогает достичь хорошей пусковой характеристики асинхронного двигателя, питающегося от однофазной электросети.

Выбор способа пуска асинхронного электродвигателя зависит от того, к какой сети он включается: к однофазной или трехфазной. Влияет также мощность мотора и его конструкция.

Источник

Трехфазный асинхронный двигатель

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

,

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Читайте также:  Способы формирования уставного капитала полного хозяйственного товарищества

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение для соединения «звезда»: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы «треугольник» отсутствует нейтраль).

Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

Звезда Треугольник Обозначение
Uл, Uф — линейное и фазовое напряжение, В,
Iл, Iф — линейный и фазовый ток, А,
S — полная мощность, Вт
P — активная мощность, Вт

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза U1 U2
вторая фаза V1 V2
третья фаза W1 W2
Соединение в звезду (число выводов 3 или 4)
первая фаза U
вторая фаза V
третья фаза W
точка звезды (нулевая точка) N
Соединение в треугольник (число выводов 3)
первый вывод U
второй вывод V
третий вывод W
Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза C1 C4
вторая фаза C2 C5
третья фаза C3 C6
Соединение звездой (число выводов 3 или 4)
первая фаза C1
вторая фаза C2
третья фаза C3
нулевая точка 0
Соединение треугольником (число выводов 3)
первый вывод C1
второй вывод C2
третий вывод C3

Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента

Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).

Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети

Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.

Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:

  • ,где Cраб — емкость рабочего конденсатора, мкФ,
  • Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
  • U1 – напряжение однофазной сети, В.

Управление асинхронным двигателем

    Способы подключения асинхронного электродвигателя к сети питания:
  • прямое подключение к сети питания
  • подключение от устройства плавного пуска
  • подключение от преобразователя частоты

Варианты подключения асинхронного электродвигателя с помощью магнитного пускателя (слева), устройства плавного пуска (посеридине) и частотного преобразователя (справа). Схемы представлены в упрощенном виде.
FU1-FU9 — плавкие предохранители, KK1 — тепловое реле, KM1 — магнитный пускатель, L1-L3 — контакты для подключения к сети трехфазного переменного тока, M1-M3 — асинхронные электродвигатели, QF1-QF3 — автоматические выключатели, UZ1 — устройство плавного пуска, UZ2 — преобразователь частоты

Прямое подключение к сети питания

Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

Читайте также:  Практическая работа способы утилизации отходов

С помощью магнитных пускателей можно реализовать схему:

  • нереверсивного пуска: пуск и остановка;
  • реверсивного пуска: пуск, остановка и реверс.

Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

Нереверсивная схема

Реверсивная схема

Недостатком прямой коммутации обмоток асинхронного электродвигателя с сетью является наличие больших пусковых токов, во время запуска электродвигателя.

Плавный пуск асинхронного электродвигателя

В задачах, где не требуется регулировка скорости электродвигателя во время работы для уменьшения пусковых токов используется устройство плавного пуска.

Устройство плавного пуска защищает асинхронный электродвигатель от повреждений вызванных резким увеличением потребляемой энергии во время пуска путем ограничения пусковых токов. Устройство плавного пуска позволяет обеспечить плавный разгон и торможение асинхронного электродвигателя.

Устройство плавного пуска дешевле и компактнее частотного преобразователе. Применяется там, где регулировка скорости вращения и момента требуется только при запуске.

Частотное управление асинхронным электродвигателем

Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

    Использование частотного преобразователя позволяет:
  • уменьшить энергопротребление электродвигателя;
  • управлять скоростью вращения электродвигателя (плавный запуск и остановка, регулировка скорости во время работы);
  • избежать перегрузок электродвигателя и тем самым увеличить его срок службы.

Функциональная схема частотно-регулируемого привода

    В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
  • скалярное управление;
  • векторное управление.

Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).

Скалярное управление асинхронным двигателем с датчиком скорости

Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.

Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.

Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

    По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
  • полеориентированное управление по датчику;
  • полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).

Полеориентированное управления асинхронным электродвигателем без датчика положения ротора

Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M
Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка 0
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов [3].

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

Источник

Оцените статью
Разные способы