Прямое получение железа
Под процессами прямого восстановления железа понимают способы получения губчатого железа, металлизованного сырья, литого железа или стали непосредственно из железорудных материалов. Получение железа из руд в сыродутных горнах существовало задолго до появления доменных печей и возникновения двухстадийной схемы производства стали. Этот способ характеризовался как малой производительностью, так и низким качеством получаемого металла. Однако идея получения железа непосредственно из железорудных материалов, минуя доменный процесс, вновь возрождена, но уже на современной основе.
Особый интерес к процессам прямого восстановления стал проявляться в последние годы. Во всем мире наблюдается рост дефицита коксующихся углей, необходимых для доменного производства. Это связано с уменьшением их запасов. Кроме того, вследствие ускоренного развития порошковой металлургии возрастает потребность в железном порошке. Повышение требований к качеству сталей и сплавов вызывает необходимость увеличения использования металлизованного сырья (губчатого железа, металлизованных окатышей, крицы). При введении металлизованного сырья в шихту сталеплавильных печей обеспечивается получение металла высокого качества с минимальным содержанием вредных примесей (серы и фосфора) и примесей цветных металлов. Часть металлизованного сырья используют также при выплавке чугуна в доменных печах. В настоящее время все большее развитие получают процессы прямого получения или так называемая бескоксовая металлургия.
Существующие способы прямого получения железа в зависимости от физического состояния получаемого продукта и соответственно температуры процесса разделяют на три группы. К первой группе относятся способы получения губчатого железа и металлизованных окатышей, осуществляемые при сравнительно низких температурах, при которых протекают только восстановительные процессы, без плавления пустой породы. Продукт восстановления получается в твердом виде. Ко второй группе относятся способы получения крицы (слипшаяся масса губчатого железа). Температурные условия процесса значительно выше. Наряду с восстановлением оксидов железа происходит расплавление пустой породы с образованием шлака. Частицы восстановленного металла свариваются, образуя тестообразную крицу. К третьей группе относятся способы получения жидкой стали, осуществляемые при температурах выше точки плавления железа. Конечными продуктами являются жидкий металл и шлак.
Особенности этих процессов прямого получения железа обусловливают различие требований к исходному металлургическому сырью и восстановителям. При производстве губчатого железа и металлизованных окатышей используют богатые, не содержащие вредных примесей руды или концентраты и малосернистые восстановители. Это связано с тем, что пустая порода руд и концентратов в процессе восстановления не претерпевает никаких изменений и остается в твердом продукте, а сера восстановителя может переходить в железо. При производстве крицы, в связи с переходом пустой породы в шлак, который затем отделяется от металла, можно использовать бедные руды и низкосортное твердое топливо. Для получения жидкой стали можно применять богатые пылевидные руды и концентраты, а также брикеты или окатыши и различные угли, в том числе и антрациты.
В качестве восстановителей применяют: 1) газы — монооксид углерода (СО), водород или смеси этих газов: 2) твердые вещества — коксик или различные виды низкосортного топлива.
Способы прямого получения железа можно классифицировать также по состоянию слоя обрабатываемых материалов и соответственно применяемого оборудования:
1. Плотный неподвижный слой (восстановление, осуществляемое в ретортах, конвейерных машинах, тиглях).
2. Плотный подвижный слой (восстановление происходит в шахтных или вращающихся печах).
3. Псевдоожиженный слой, образуемый из плотных слоев при воздействии аэродинамических, вибрационных, электродинамических и других сил. Слой имеет увеличенный объем и частицы в нем движутся подобно тому, как движутся частицы в кипящей жидкости (восстановление осуществляется в колоннах или в трубчатых печах).
4. Взвешенный слой, состоящий из двух фаз, газа и твердых частиц, образует своего рода облако или движется с газовым потоком (процесс осуществляется в колоннах, циклонах, реакторах и кольцевых печах).
Из большого числа разработанных процессов наибольшее распространение получили процессы получения губчатого железа и металлизованных окатышей. Процесс получения крицы, хотя и применяют в ряде стран, однако вследствие невысокой производительности он не является перспективным. Процессы прямого получения жидкой стали пока применяются в опытных и полупромышленных масштабах и не могут конкурировать с двухстадийным способом производства стали (доменная печь — сталеплавильная печь). Однако это не исключает возможность их дальнейшего совершенствования и разработки более эффективных и экономически рентабельных процессов.
Дата добавления: 2015-06-22 ; просмотров: 1296 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Современные процессы прямого получения железа
Прямой метод добычи железа из сырья (руды) использовали давно, еще до современных доменных печей. В настоящее время этот метод возрождается, но теперь уже с применением современных способов и новых устройств.
Есть несколько вариантов получения железа прямым способом. Они отличаются по температурному режиму, применяемому для их получения, а также по состоянию конечного продукта.
Методы получения железа прямым способом
• Производство губчатого железа
Проходит при пониженных температурных параметрах, в результате чего восстанавливаются окислы железа. Процесс плавки рудных пород отсутствует и в результате получается твердый продукт. Для выпуска губчатого железа используют туннельные, шахтные и трубчатые печи. В современном мире внедряются новейшие способы с применением специальных реакторов.
• Производство крицы
Температурный режим в этом процессе выше, применяется плавление рудных пород. В результате металлические частицы свариваются и образуют крицу, которая имеет тестообразную консистенцию. Чтобы изготовить кричное железо сейчас применяются вращающиеся печи.
• Производство жидкой стали
Жидкая сталь получается при значительно высоких температурных параметрах. При такой методике получается шлак и металл в жидком виде.
Преимущества получения железа прямым способом
• Имеется возможность не расходовать металлургический кокс, а заменить его другими разновидностями топлива.
• Возможность получать металл в чистом виде, полностью освобожденный от примесей, в т.ч. фосфора, серы.
• В концентратах высокое содержание железа (до 72 %).
• Возможность применять руду, содержащую ценные компоненты (хром, ванадий, никель).
• Эффективно для производства губчатого железа. Оно применяется в процессах выплавки стали, а также для изготовления железного порошка.
Виды используемого сырья
• Чтобы получить губчатое железо, в основном, применяют обогащенную породу, в которой отсутствуют посторонние примеси, окатыши и агломерат. А также применяются восстановители, содержащие небольшое количество серы, потому что пустая порода не изменяется и может оставаться в губчатом железе. Следовательно, сера, содержащаяся в восстановителе, перейдет в железо.
• Для изготовления кричного железа можно использовать более бедную руду и низкосортное топливо. Это возможно из-за того, что пустая руда перейдет в шлак, который впоследствии удаляется из металла.
• Чтобы получить жидкую сталь применяют обогащенное пылевидное сырье, окатыши, брикеты, которые получены из разных видов угля.
Конечные продукты, имеющие различные степени чистоты находят свое применение в разных сферах производства, а именно:
• Губчатое железо необходимо при изготовлении железного порошка, а также оно может заменить железный лом при плавке стали высокого качества в мартенах и электрических печах.
• Кричное железо, так как является более загрязненным сырьем, содержащим посторонние примеси, используется в качестве железного лома в мартеновских, доменных, электродуговых печах и конвертерах.
Все вышеперечисленные способы получения железа прямым методом из породы имеют главный недостаток: низкий коэффициент полезного действия установок. Это существенно сужает область их использования.
В последние годы во многих странах растет интерес к способам прямого получения железа. Проводятся работы по улучшению имеющихся методов получения железа прямым способом. А также, разрабатываются более совершенные, более эффективные способы производства стали из руды, без использования доменных печей. Есть вероятность, что в перспективе производства железа и стали будут основаны на использовании электрической и атомной энергии, высокотемпературной плазмы.
Источник
Классификация процессов прямого получения железа
Известно, что при всех преимуществах доменная плавка имеет два существенных недостатка: может работать только на окускованных шихтовых материалах и значительное потребление дорогого дефицитного кокса.
Поэтому во всем мире активно разрабатывают и внедряют различные процессы прямого получения железа из руд.
Внедоменные процессы получения жидкого металла непосредственно из железорудных материалов очень многообразны по типу агрегатов, используемых восстановителей и получаемых продуктов, поэтому можно с различных позиций их и классифицировать.
Целесообразно разделить все технологические схемы внедоменного получения жидкого металла на две группы: многоступенчатые процессы, которые предусматривают две и более стадий на пути переработки железорудных материалов в жидкий металл, и одностадийные — процессы, осуществляемые в одном агрегате.
Многоступенчатые процессы включают стадии нагрева и восстановления железорудных материалов, плавления и рафинирования получаемого металла. Все эти стадии могут осуществляться в агрегатах различного типа, работающих в одной технологической цепи. Например, для нагрева и частичного восстановления железорудных материалов могут быть применены шахтные или вращающиеся печи, реакторы кипящего слоя, циклонные камеры, конвейерные машины или другие агрегаты, а для окончательного восстановления, плавления и рафинирования металла — электропечи (сопротивления, индукционные, дуговые, плазменные), отражательные печи и другие.
Разделение во времени и пространстве стадий восстановления и плавления железорудных материалов, осуществляемых при различных температурах, является основным преимуществом многоступенчатых процессов, так как позволяет повысить стойкость огнеупорной футеровки агрегатов, избежать нежелательного явления — настылеобразования и слипания материалов.
Классификация процессов прямого получения железа из руд следующая: по применяемым агрегатам, типу восстановителя, по состоянию получаемого продукта и по назначению получаемого продукта.
Способы прямого восстановления железных руд можно разделить на три основные группы по температурному режиму, определяющему вид конечного продукта.
1 Процессы восстановления при низких температурах (не выше 1100 0 С) с получением твердого губчатого железа.
2 Восстановление в тестообразном шлаке во вращающихся печах при 1250-1350 0 С с получением сваренных зерен металла, образующих крицу.
3 Процессы восстановления при температурах выше 1500 0 С, конечным продуктом которых является жидкий металл.
Производства металлизированных материалов могут быть двух типов:
а) средневосстановленные (на 30–40%) рудные, концентратные и концентратно-топливные офлюсованные и неофлюсованные окатыши, брикеты и агломераты, предназначенные для использования в доменных печах;
б) высоковосстановленные (до 90–98%) окатыши, брикеты и другие аналогичные материалы, предназначенные для использования в установках прямого получения железа и сталеплавильных агрегатах; такие материалы могут использоваться и как заменитель лома при производстве стали;
в) продукция со степенью металлизации более 98% используется для производства железного порошка используемого в порошковой металлургии.
Введение металлизированных материалов в шихту доменных печей существенно улучшает показатели их работы: можно существенно снизить расход кокса и повысить производительность печи.
Металлизация проводится по двум направлениям.
1. Металлизации может быть как самостоятельной, когда восстанавливаются готовые окатыши и брикеты в отдельных агрегатах, так и совмещенным со спеканием агломерата или обжигом окатышей.
2. Совмещение спекания с металлизацией выгодно с точки зрения энергетических затрат, но технологически более сложно:
а) восстановление материалов газами СО и Н2, которые получают конверсией природного газа в смеси с воздухом, водяным паром или кислородом в специальных агрегатах – реформерах или конвертерах; по другому методу эти газы получают сжиганием твердого топлива с недостатком воздуха, т.е. при переработке этого топлива в газогенераторах;
б) производство концентратно — топливных окатышей и брикетов и последующее частичное восстановление их газами за счет выделяющегося при неполном сгорании топлива оксида углерода.
Мидрекс процесс
При совмещении спекания и металлизации в одном процессе восстановление осуществляют либо за счет твердого топлива, подаваемого в шихту, либо за счет этого топлива и просасываемых через слой восстановительных газов.
Осуществляются такие процессы в шахтных печах, реакторах кипящего слоя, вращающихся трубчатых печах, и при спекании и обжиге – на ленте агломерационной или обжиговой машины.
Сущность конверсии заключается во взаимодействии природного газа с водяным паром, оксидом углерода (IV) или кислородом при температуре 900 – 1450 °С по реакциям:
Эти реакции протекают при наличии специальных катализаторов. Условием успешного их протекания является предварительная очистка природного газа от серы.
Более 70% промышленных мощностей по производству металлизированных материалов работают по процессу Мидрекс, впервые осуществленному в 1969 г. в США. Его принципиальная схема приведена на рисунке 8.1. Сырые окатыши получают из магнетитового концентрата с добавкой бентонита по обычной технологии в барабанном окомкователе 7. Затем они обжигаются в шахтной печи 11 (в последующих конструкциях установки эту печь заменили обычной обжиговой ленточной машиной).
1-дисковые фильтр; 2-промежуточный бункер; 3-тарельчатый питатель; 4-весы; 5-бункер с бентонитом; 6-смеситель; 7-барабанный окомкователь; 8-грохот для сырых окатышей; 9-ленточный питатель; 10-пылеуловитель; 11-печь для обжига окатышей; 12-камера горения; 13-спиральный классификатор; 14-шаровая мельница; 15-грохот для обожженных окатышей; 16-скиповый подъемник; 17-шахтная печь для металлизации; 18-газовый холодильник; 19-конвейер металлизированных окатышей; 20-бункер металлизированных окатышей; 21-установка для конверсии природного газа
Рисунок 10.1- Схема процесса Мидрекс
Охлажденные до 425 °С окатыши сортируют по крупности на грохоте 15. Отсортированные окатыши направляют на металлизацию в шахтную печь 17.
Окатыши восстанавливают конвертированным газом, полученным при конверсии природного газа оксидом углерода, отходящим из шахтной печи, в конвертерах 21. Перед подачей в конвертеры отходящий из шахтной печи газ очищают от пыли и влаги. Металлизированные продукты со степенью металлизации 95% и содержанием углерода 0,7–1,0% охлаждаются в нижней части печи циркулирующим инертным газом до температуры 50–65 °С, после чего выгружаются в бункер 21, где хранятся в инертной атмосфере до отправки потребителю. Циркулирующий газ охлаждается водой в холодильнике 18.
Одна установка Мидрекс производит в год около 400 тыс. т металлизированных на 90–95% окатышей, потребляя около 1500–1800 м 3 восстановительных газов на тонну продукта. Этот расход можно уменьшить, используя одну часть колошникового газа как топливо, а другую, направляя на конверсию.
Источник