Способы применения радиоактивных изотопов
РАДИОАКТИВНЫЕ ИЗОТОПЫ И ИХ ПРИМЕНЕНИЕ
Конец XⅨ и начало XX веков ознаменованы большими научными открытиями в физике и химии. К этому периоду относится открытие лучей Рентгена, электронов и, наконец, радиоактивности.
Не прошло и полстолетия со времени открытия радиоактивных изотопов, как в результате бурного развития физики и химии они нашли самое широкое применение в науке и технике.
Можно наметить три основных вида применения радиоактивных изотопов. Они используются, во-первых, в качестве нового оружия научного исследования — меченых атомов в различных областях науки — физике, химии, биологии, медицине, геологии, археологии и т. д. Во-вторых, как излучатели — наряду с лучами Рентгена для просвечивания материалов, устройства приборов автоматического контроля производства, изготовления измерительных приборов и т. п. В-третьих, радиоактивные изотопы могут использоваться в качестве источников ядерной энергии.
Получение и использование радиоактивных изотопов — великое достижение человеческого гения, открывающее огромные перспективы в дальнейшем развитии производительных сил. Жизненные интересы народов требуют того, чтобы использование радиоактивных изотопов для целей разрушения и массового уничтожения людей было запрещено, чтобы эта могучая сила природы использовалась исключительно в интересах созидания, в интересах прогресса человечества. Однако не секрет, что влиятельные круги США и некоторых других капиталистических стран задались целью поставить радиоактивные изотопы и атомную энергию на службу планам войны.
Известно, что в развитии вооруженных сил крупнейших капиталистических государств главное внимание уделяется атомному оружию, разработке целой серии его образцов, отличающихся различной взрывной мощностью, а также разработке способов использования атомного оружия авиацией, флотом, артиллерией и реактивными средствами. Новые планы правительства США относительно создания и размещения на территориях других государств специальных военных частей, вооруженных атомным оружием, свидетельствует об усилении американскими правящими кругами подготовки к атомной войне. Соединенные Штаты продолжают также усиленно вооружать союзников по агрессивным блокам. Сессия Совета НАТО приняла решение об укреплении военного сотрудничества внутри этого союза и об оснащении Соединенными Штатами вооруженных сил своих европейских партнеров, включая Западную Германию, атомным и ракетным оружием.
Происходящая сейчас гонка вооружений и особенно состязание в производстве атомного, водородного и ракетного оружия угрожающим образом ухудшают международную обстановку. Расширение масштабов и наращивание темпов гонки атомных вооружений, усилившиеся за последнее время приготовления стран НАТО к атомной войне вызывают вполне понятное и законное беспокойство во всем мире. Много ли сейчас найдется людей, которые не осознают, какими неисчислимыми бедствиями грозит человечеству война с применением атомного и водородного оружия?
Нетрудно себе представить, какой губительный характер приняла бы война при современном развитии ядерной и ракетной техники, которая к тому же каждый день приносит что-либо новое. Без преувеличений можно сказать, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. Нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории. А ведь ни для кого не секрет, что если дело дойдет до применения ядерного оружия, то будет взорвано немало таких водородных бомб.
Хорошо известно также, что существуют не только атомные и водородные бомбы, но существует колоссальной разрушительной силы ракетное оружие (с атомными и водородными зарядами), применение которого в войне способно в течение нескольких часов посеять смерть и опустошения на территории целых государств. При современной технике все точки земного шара одинаково доступны для атомной бомбардировки, а ответные выстрелы могут быть произведены еще во время полета к цели снарядов, пущенных поджигателем войны. Атомная война неизбежно приведет к значительному заражению всей нашей атмосферы, и, таким образом, выстрел по противнику неизбежно отразится не только на том, кто производит выстрел, а также и на народах, не втянутых в войну.
За последние годы опасность атомной войны не только не уменьшилась, но, наоборот, возросла во много раз. Запасы ядерного оружия увеличились. К числу государств, производящих или пытающихся производить атомное оружие, присоединяются новые государства. В результате проведенных взрывов атомных и водородных бомб вся поверхность Земли и особенно северное полушарие оказались загрязненными радиоактивными веществами, образующимися при каждом взрыве.
Источник
Способы применения радиоактивных изотопов
Радиоактивные изотопы широко используются в самых различных областях науки и техники.
Элементы, не существующие в природе. С помощью ядерных реакций можно получить радиоактивные изотопы всех химических элементов, встречающихся в природе только в стабильном состоянии. Элементы под номерами 43, 61, 85 и 87 вообще не имеют стабильных изотопов и впервые получены искусственно. Так, например, элемент с порядковым номером Z — 43, названный технецием, имеет самый долгоживущий изотоп с периодом полураспада около миллиона лет.
С помощью ядерных реакций получены также трансурановые элементы. О нептунии и плутонии вы уже знаете. Кроме них, получены еще следующие элементы: америций (Z = 95), кюрий (Z = 96), берклий (Z = 97), калифорний (Z = 98), эйнштейний (Z = 99), фермий (Z = 100), менделевий (Z = 101), нобелий (Z = 102), лоуренсий (Z = 103), ре-зерфордий (Z = 104), дубний (Z = 105), сиборгий (Z = 106), борий (Z = 107), хассий (Z = 108), мейтнерий (Z = 109), а также элементы под номерами 110, 111 и 112, не имеющие пока общепризнанных названий. Элементы, начиная с номера 104, впервые синтезированы либо в подмосковной Дубне, либо в Германии.
Меченые атомы. В настоящее время как в науке, так и в производстве все более широко используются радиоактивные изотопы различных химических элементов. Наибольшее применение имеет метод меченых атомов.
Метод основан на том, что химические свойства радиоактивных изотопов не отличаются от свойств нерадиоактивных изотопов тех же элементов.
Обнаружить радиоактивные изотопы можно очень просто — по их излучению. Радиоактивность является своеобразной меткой, с помощью которой можно проследить за поведением элемента при различных химических реакциях и физических превращениях веществ. Метод меченых атомов стал одним из наиболее действенных методов при решении многочисленных проблем биологии, физиологии, медицины и т. д.
Радиоактивные изотопы — источники излучений. Радиоактивные изотопы широко применяются в науке, медицине и технике как компактные источники γ-лучей. Главным образом используется радиоактивный кобальт 27 60 Co.
Получение радиоактивных изотопов. Получают радиоактивные изотопы в атомных реакторах и на ускорителях элементарных частиц. В настоящее время производством изотопов занята большая отрасль промышленности.
Радиоактивные изотопы в биологии и медицине. Одним из наиболее выдающихся исследований, проведенных с помощью меченых атомов, явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми.
Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Железо входит в состав гемоглобина красных кровяных шариков. При введении в пищу радиоактивных атомов железа 26 59 Fe было обнаружено, что они почти не поступают в кровь. Только в том случае, когда запасы железа в организме иссякают, железо начинает усваиваться организмом.
Если не существует достаточно долго живущих радиоактивных изотопов, как, например, у кислорода и азота, меняют изотопный состав стабильных элементов. Так, добавлением к кислороду избытка изотопа 8 18 O было установлено, что свободный кислород, выделяюнщйся при фотосинтезе, первоначально входил в состав воды, а не углекислого газа.
Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей.
Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения.
Иод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Наблюдая с помощью счетчика за отложением радиоактивного иода, можно быстро поставить диагноз. Большие дозы радиоактивного иода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный иод используют для лечения базедовой болезни.
Интенсивное -излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка).
Радиоактивные изотопы в промышленности. Не менее обширна область применения радиоактивных изотопов в промышленности. Одним из примеров может служить способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца.
Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д. Мощное γ-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.
Радиоактивные изотопы в сельском хозяйстве. Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве. Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами γ-лучей от радиоактивных препаратов приводит к заметному повышению урожайности.
Большие дозы радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радиоселекция). Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высокопродуктивные микроорганизмы, применяемые в производстве антибиотиков. Гамма-излучение радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов.
Широкое применение получили меченые атомы в агротехнике. Например, чтобы выяснить, какое из фосфорных удобрений лучше усваивается растением, помечают различные удобрения радиоактивным фосфором ЦР. Исследуя за тем растения на радиоактивность, можно определить количество усвоенного ими фосфора из разных сортов удобрения.
Радиоактивные изотопы в археологии. Интересное применение для определения возраста древних предметов органического происхождения (дерева, древесного угля, тканей и т. д.) получил метод радиоактивного углерода. В растениях всегда имеется β-радиоактивный изотоп углерода 6 14 C с периодом полураспада Т = 5700 лет. Он образуется в атмосфере Земли в небольшом количестве из азота под действием нейтронов. Последние же возникают за счет ядерных реакций, вызванных быстрыми частицами, которые поступают в атмосферу из космоса (космические лучи).
Соединяясь с кислородом, этот изотоп углерода образует углекислый газ, поглощаемый растениями, а через них и животными. Один грамм углерода из образцов молодого леса испускает около пятнадцати β-частиц в секунду.
После гибели организма пополнение его радиоактивным углеродом прекращается. Имеющееся же количество этого изотопа убывает за счет радиоактивности. Определяя процентное содержание радиоактивного углерода в органических остатках, можно определить их возраст, если он лежит в пределах от 1000 до 50 000 и даже до 100 000 лет. Таким методом узнают возраст египетских мумий, остатков доисторических костров и т. д.
Источник
Способы применения радиоактивных изотопов
«Физика — 11 класс»
В атомной индустрии всевозрастающую ценность для человечества представляют радиоактивные изотопы.
Элементы, не существующие в природе
С помощью ядерных реакций можно получить радиоактивные изотопы всех химических элементов, встречающихся в природе только в стабильном состоянии.
Элементы под номерами 43, 61, 85 и 87 вообще не имеют стабильных изотопов и впервые получены искусственно.
Так, например, элемент с порядковым номером Z = 43, названный технецием, имеет самый долгоживущий изотоп с периодом полураспада около миллиона лет.
С помощью ядерных реакций получены также трансурановые элементы.
О нептунии и плутонии вы уже знаете.
Кроме них, получены еще следующие элементы: америций (Z = 95), кюрий (Z = 96), берклий (Z = 97), калифорний (Z = 98), эйнштейний (Z = 99), фермий (Z = 100), менделевий (Z = 101), нобелий (Z = 102), лоуренсий (Z = 103), резерфордий (Z = 104), дубний (Z = 105), сиборгий (Z = 106), борий (Z = 107), хассий (Z = 108), мейтнерий (Z = 109), а также элементы под номерами 110, 111 и 112, не имеющие пока общепризнанных названий.
Элементы, начиная с номера 104, впервые синтезированы либо в подмосковной Дубне, либо в Германии.
Меченые атомы
В настоящее время как в науке, так и в производстве все более широко используются радиоактивные изотопы различных химических элементов.
Наибольшее применение имеет метод меченых атомов.
Метод основан на том, что химические свойства радиоактивных изотопов не отличаются от свойств нерадиоактивных изотопов тех же элементов.
Обнаружить радиоактивные изотопы можно очень просто — по их излучению.
Радиоактивность является своеобразной меткой, с помощью которой можно проследить за поведением элемента при различных химических реакциях и физических превращениях веществ.
Метод меченых атомов стал одним из наиболее действенных методов при решении многочисленных проблем биологии, физиологии, медицины и т. д.
Радиоактивные изотопы — источники излучений
Радиоактивные изотопы широко применяются в науке, медицине и технике как компактные источники γ-лучей.
Главным образом используется радиоактивный кобальт
Получение радиоактивных изотопов
Получают радиоактивные изотопы в атомных реакторах и на ускорителях элементарных частиц.
В настоящее время производством изотопов занята большая отрасль промышленности.
Радиоактивные изотопы в биологии и медицине
Одним из наиболее выдающихся исследований, проведенных с помощью меченых атомов, явилось исследование обмена веществ в организмах.
Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению.
Слагающие его атомы заменяются новыми.
Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила.
Железо входит в состав гемоглобина красных кровяных шариков.
При введении в пищу радиоактивных атомов железа было обнаружено, что они почти не поступают в кровь.
Только в том случае, когда запасы железа в организме иссякают, железо начинает усваиваться организмом.
Если не существует достаточно долго живущих радиоактивных изотопов, как, например, у кислорода и азота, меняют изотопный состав стабильных элементов.
Так, добавлением к кислороду избытка изотопа было установлено, что свободный кислород, выделяющийся при фотосинтезе, первоначально входил в состав воды, а не углекислого газа.
Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей.
Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения.
Иод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни.
Наблюдая с помощью счетчика за отложением радиоактивного иода, можно быстро поставить диагноз.
Большие дозы радиоактивного иода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный иод используют для лечения базедовой болезни.
Интенсивное γ-излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка).
Радиоактивные изотопы в промышленности
Не менее обширна область применения радиоактивных изотопов в промышленности.
Одним из примеров может служить способ контроля износа поршневых колец в двигателях внутреннего сгорания.
Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным.
При работе двигателя частички материала кольца попадают в смазочное масло.
Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца.
Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.
Мощное γ-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.
Радиоактивные изотопы в сельском хозяйстве
Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве.
Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами γ-лучей от радиоактивных препаратов приводит к заметному повышению урожайности.
Большие дозы радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радиоселекция).
Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высокопродуктивные микроорганизмы, применяемые в производстве антибиотиков.
Гамма-излучение радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов.
Широкое применение получили меченые атомы в агротехнике.
Например, чтобы выяснить, какое из фосфорных удобрений лучше усваивается растением, помечают различные удобрения радиоактивным фосфором
Исследуя затем растения на радиоактивность, можно определить количество усвоенного ими фосфора из разных сортов удобрения.
Радиоактивные изотопы в археологии
Интересное применение для определения возраста древних предметов органического происхождения (дерева, древесного угля, тканей и т. д.) получил метод радиоактивного углерода.
В растениях всегда имеется β-радиоактивный изотоп углерода с периодом полураспада Т = 5700 лет.
Он образуется в атмосфере Земли в небольшом количестве из азота под действием нейтронов.
Последние же возникают за счет ядерных реакций, вызванных быстрыми частицами, которые поступают в атмосферу из космоса (космические лучи).
Соединяясь с кислородом, этот изотоп углерода образует углекислый газ, поглощаемый растениями, а через них и животными.
Один грамм углерода из образцов молодого леса испускает около пятнадцати β-частиц в секунду.
После гибели организма пополнение его радиоактивным углеродом прекращается.
Имеющееся же количество этого изотопа убывает за счет радиоактивности.
Определяя процентное содержание радиоактивного углерода в органических остатках, можно определить их возраст, если он лежит в пределах от 1000 до 50 000 и даже до 100 000 лет.
Таким методом узнают возраст египетских мумий, остатков доисторических костров и т. д.
Радиоактивные изотопы широко применяются в биологии, медицине, промышленности, сельском хозяйстве и даже в археологии.
Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин
Физика атомного ядра. Физика, учебник для 11 класса — Класс!ная физика
Источник