Способы преобразования чертежа начертательная геометрия
Контрольные задания по теме: Рабочая тетрадь задача 50
Трудоемкость и точность графического решения задач часто зависит не только от сложности задач, но и от того, какое положение занимают геометрические фигуры по отношению к плоскостям проекций. Наиболее выгодными являются положения, параллельные плоскостям проекций или перпендикулярные им.
Переход от общего положения геометрической фигуры к частному можно осуществить двумя путями:
а) перемещением в пространстве проецируемой фигуры так, чтобы она заняла частное положение относительно плоскостей проекций, которые при этом не меняют своего положения;
б) выбором новой плоскости проекций, по отношению к которой фигура, не имеющая своего положения в пространстве, окажется в частном положении. Первый путь лежит в основе способа плоскопараллельного перемещения, а второй — в основе способа замены плоскостей проекций.
Существует несколько способов плоскопараллельного перемещения:
1. Способ параллельного перемещения. При этом плоскости, по которым двигаются точки фигуры, параллельны плоскости проекций. Траектория — произвольная плоская линия;
2. Способ вращения вокруг оси, перпендикулярной к плоскости проекций. Траектории перемещаемых точек — дуги окружностей, центры которых находятся на оси вращения;
3. Способ вращения вокруг оси параллельной плоскости проекций (вокруг линии уровня).
Это частный случай параллельного перемещения. За траекторию движения точки принимается не произвольная линия, а дуга окружности, центр которой находится на оси вращения, а радиус равен расстоянию между осью вращения и данной точкой.
При вращении точки вокруг оси перпендикулярной, П 2 , фронтальная проекция точки перемещается по окружности, а горизонтальная — по прямой, перпендикулярной оси вращения. Если же точка вращается вокруг оси, перпендикулярной П 1 , то в горизонтальной плоскости траекторией ее движения будет окружность, а во фронтальной – прямая, перпендикулярная оси вращения. На рисунке 32 показано построение новых проекций точек при помощи способа вращения. На рисунке 32 а – вращение вокруг фронтально-проецирующей оси, на рисунке 32 б – вокруг горизонтально-проецирующей оси.
Рисунок 32
Этим способом удобно находить натуральные величины отрезков и фигур, занимающих проецирующее положение.
На рисунке 33 показан пример определения натуральной величины треугольника АВС, плоскость которого перпендикулярна П 2 . За ось вращения необходимо взять фронтально-проецирующую прямую, проходящую через точку, принадлежащую этой плоскости. В данном случае выбрана точка А — вершина треугольника. Плоскость треугольника вращается во фронтальной плоскости вокруг оси до положения, параллельного горизонтальной плоскости. Во фронтальной плоскости точки С и В перемещаются по окружностям, радиус которых равен расстоянию от оси вращения до фронтальных проекций точек. В горизонтальной плоскости траектории движения точек – прямые, перпендикулярные оси. Полученная проекция треугольника А´В´С´, является его натуральной величиной.
Рисунок 33
Способ вращения наиболее часто применяется при определении натуральных величин сечений поверхностей плоскостями частного положения.
Сущность этого способа состоит в том, что положение фигуры в пространстве не меняется, а вводится новая система плоскостей проекций. Новая плоскость проекции выбирается перпендикулярно к одной из старых. При этом, проецируемая фигура по отношению к новой плоскости занимает частное положение, обеспечивая наиболее удобное решение задачи. Если замена одной плоскости не обеспечивает требуемый результат, то новую плоскость заменяют еще раз.
На рисунке 34 показано построение проекции точки А в новой системе плоскостей проекций при замене плоскости П 1 на П 4 . Плоскость П 4 перпендикулярна П 2 . Проекция точки А1 заменяется на А 4 . По линии связи откладывается расстояние от заменяемой проекции точки до новой оси.
Рисунок 34
На рисунке 35 дан пример определения натуральной величины отрезка общего положения. Новая плоскость П 4 выбирается параллельно одной из проекций отрезка. При этом проекция отрезка на эту плоскость будет являться его натуральной величиной.
Рисунок 35
В некоторых случаях требуется замена двух плоскостей проекции. Например, при определении расстояния от точки до прямой. При этом прямую необходимо спроецировать в точку. На рисунке 36 отрезок общего положения переведен в проецирующее положение по отношению к плоскости П5.
Рисунок 36
1. Назовите, какие вы знаете способы преобразования чертежа. Для чего они применяются?
2. Какие задачи можно решать при помощи способа вращения вокруг проецирующей оси?
3. По каким линиям перемещаются проекции точки при вращении вокруг горизонтально проецирующей оси?
4. Можно ли определить натуральную величину фигуры общего положения способом вращения вокруг проецирующей оси?
5. В чем суть способа замены плоскостей проекций?
6. Как построить проекцию точки в новой системе плоскостей проекций? Этапы построения.
7. Сколько замен нужно осуществить, чтобы перевести отрезок общего положения в проецирующее положение?
8. Как нужно выбрать новую плоскость, для того, чтобы сделать плоскость общего положения проецирующей?
© ФГБОУ ВПО Красноярский государственный аграрный университет
Источник
Способы преобразования чертежа
Способы преобразования чертежа служат для решения метрических задач по определению натуральной величины геометрических объектов (отрезка прямой или плоскости), либо кратчайшего расстояния между геометрическими объектами.
Суть этих способов заключается в том, что необходимо преобразовать комплексный чертеж так, чтобы рассматриваемый геометрический объект занял положение параллельное какой-либо плоскости проекций. Тогда на нее он, очевидно, спроецируется в натуральную величину.
Такое преобразование комплексного чертежа может быть осуществлено двумя основными способами:
1. Способом вращения, при котором оставляют неизменной систему плоскостей проекций, а меняют положение заданного геометрического объекта путем его вращения вокруг одной или последовательно вокруг двух подходящим образом выбранных осей так, чтобы интересующие нас прямые или плоскости оказались параллельными одной из плоскостей проекций. В качестве оси вращения обычно выбирают прямую, перпендикулярную одной из плоскостей проекций.
2. Способом замены плоскостей проекций, при котором оставляют неизменным положение в пространстве геометрического объекта, а заменяют одну или последовательно обе плоскости проекций так, чтобы интересующие нас прямые или плоскости оказались параллельными одной из новых плоскостей проекций.
Этими способами также можно решать задачи на приведение геометрических объектов в проецирующее положение.
Способ вращения вокруг проецирующей оси
Рассмотрим вращение точки А вокруг оси i, перпендикулярной горизонтальной плоскости проекций П1 (рис. 4.1). Ось вращения проецируется на плоскость П1 в точку, а на плоскость П2 — в прямую, перпендикулярную оси ОХ. Траекторией движения точки А будет окружность, лежащая в плоскости вращения, параллельной плоскости П1, с центром вращения в точке О, лежащей на оси, и с радиусом вращения ОА (рис. 4.1, а).
Траектория движения точки проецируется на плоскость П1 в натуральную величину, а на плоскость П2 — в виде прямой, параллельной оси ОХ. Радиус окружности проецируется на плоскость П1 в натуральную величину. Таким образом, горизонтальная проекция А1 точки А движется по окружности, а фронтальная проекция А2 — по прямой, параллельной оси ОХ.
Для того, чтобы повернуть точку А на угол j, откладывают этот угол на горизонтальной проекции (рис. 4.1, б) и получают горизонтальную проекцию А1 точки А в новом положении А1*. Фронтальную проекцию А2* этой точки находят с помощью линии проекционной связи, которую проводят из точки А1* до пересечения с прямой, проведенной из точки А2 параллельно оси ОХ.
Рис. 4.1. Вращение точки вокруг горизонтально-проецирующей оси
Способ плоскопараллельного перемещения
Способ плоскопараллельного перемещения является частным случаем способа вращения вокруг проецирующей оси, с той лишь разницей, что геометрический объект можно не только вращать, но и перемещать вдоль плоскости, параллельной одной из плоскостей проекций.
При перемещении отрезка прямой в новое положение таким образом, что его крайние точки движутся параллельно какой-либо плоскости проекций, длина проекции отрезка на эту плоскость остается неизменной (рис. 4.2).
Рис. 4.2. Плоскопараллельное перемещение отрезка прямой.
Преобразуем последовательно отрезок прямой линии общего положения АВ в положение горизонтали, затем фронтально-проецирующее положение. Для этого расположим фронтальную проекцию А2В2 отрезка АВ параллельно оси ОХ (А2*В2* параллелен ОХ) в любом месте чертежа. При этом точки А1 и В1 перемещаются в новое положение по прямым, параллельным оси ОХ, и будут лежать на линиях связи с А2*, В2* соответственно.
Тогда новая горизонтальная проекция займет положение А1*В1*. Очевидно, что А1*В1*- натуральная величина отрезка АВ, т.к. А*В* является горизонталью. Затем А1*В1* переместим в новое положение, чтобы А1**В1** была перпендикулярна оси ОХ. Тогда А2** = В2**, т.е. АВ займет положение проецирующей прямой. Следует заметить, что при определение натуральной величины АВ, которой является А1*В1*, удаленность проекции А2*В2* от оси ОХ не играет роли. Важно лишь выполнение двух требований: А2*В2* должна быть равна А2В2 и параллельна оси ОХ.
Способ замены плоскостей проекций
Способ замены плоскостей проекций состоит в том, что одна из основных плоскостей проекций П1 или П2 заменяется новой плоскостью проекций П4, подходящим образом расположенной относительно изображаемого геометрического объекта, но перпендикулярной незаменяемой плоскости проекций.
В результате замены одной из основных плоскостей на плоскость проекций П4 получаем вместо старой системы плоскостей проекций П1/П2 новую систему П1/П4 (рис. 4.3), если заменялась плоскость П2, и систему П2/П4, если заменялась плоскость П1.
Рис. 4.3. Интерпретация способа замены плоскостей проекций
Например, на рис. 4.3а плоскость П4 может выступать в роли фронтальной плоскости проекций П2. На рисунке 4.3б, фигурными скобками отмечены расстояния от точки А до горизонтальной плоскости проекций П1. Естественно, как видно на рис. 4.3а, эти расстояния равны А2А12 = А4А14, так как высота точки А над плоскостью П1 проецируется как на П2, так и на П4 в виде одинаковых отрезков. Расстояние же до П2 и П4 от точки А могут быть различными, поэтому А1А12¹А1А14.
Способ замены плоскостей проекций рационально применять при решении следующих задач:
— определение натуральной величины отрезка прямой линии;
— определение натуральной величины плоской фигуры;
— определение натуральной величины двугранного угла;
— определение кратчайшего расстояния от точки до прямой линии или до плоскости;
— определение кратчайшего расстояния между двумя параллельными или двумя скрещивающимися прямыми.
Решение задач данным способом рассмотрим на нескольких примерах.
Определение длины отрезка общего положения
Для определения натуральной величины (длины) отрезка АВ прямой линии необходимо сделать этот отрезок прямой линии общего положения в новой системе плоскостей проекций линией уровня. Чтобы отрезок АВ стал линией уровня относительно новой плоскости проекций, заменим плоскость П2 на плоскость П4, параллельную АВ, и перейдем от системы П1/П2 к системе П1/П4. Новую ось проекций X14, выбираем параллельно А1В1 (рис. 4.4). Для построения новой проекции отрезка АВ проводим новые линии проекционной связи перпендикулярно оси Х14, и отмечаем на них новые проекции А4, В4 точек А и В. Для этого откладываем Ах1А4 = А2Ах, Вх1В4 = В2Вх.
Рис. 4.4. Преобразование прямой общего положения в прямую уровня.
Соединяя найденные точки А4, В4, получаем новую проекцию А4В4 отрезка АВ. Как видим, отрезок АВ в новой системе плоскостей проекций П1/П4 является линией уровня, так как А1В1 параллельна X14, а следовательно, АВ параллельна П4. Тогда, очевидно, что А4В4 является натуральной величиной отрезка АВ.
Определение натуральной величины плоской фигуры
Для определения натуральной величины плоской фигуры необходимо дополнительную плоскость построить так, чтобы она была параллельна рассматриваемой фигуре, и тогда на эту плоскость проекций плоская фигура спроецируется в натуральную величину. Если в качестве плоской фигуры выбрать треугольник, тогда задача формулируется следующим образом: преобразовать плоскость треугольника общего положения в новой системе плоскостей проекций в плоскость уровня.
Одной заменой плоскостей проекций эту задачу решить невозможно, так как необходимо соблюдать условие: новая плоскость должна быть перпендикулярна незаменяемой. Поэтому решим эту задачу двумя заменами: первой заменой введем плоскость, которая перпендикулярна треугольнику АВС, второй заменой – плоскость, параллельную треугольнику АВС.
Для того, чтобы построить плоскость П4, перпендикулярную треугольнику АВС, необходимо расположить ее так, чтобы она была перпендикулярна фронтали либо горизонтали треугольника АВС.
Пусть П4 перпендикулярна горизонтали, тогда новая ось Х14 должна быть перпендикулярна h1 (рис. 4.5).
Рис. 4.5. Преобразование плоскости общего положения в плоскость уровня.
Построим ее на произвольном расстоянии от треугольника А1В1С1. Затем из точек А1, В1, С1 проведем линии связи перпендикулярно Х14. На каждой из них от оси Х14 отложим отрезок, равный расстоянию от фронтальной проекции соответствующей точки до оси Х12. В результате получаем новую проекцию В4А4С4 треугольника АВС, которая представляет собой прямую, поскольку плоскость треугольника АВС перпендикулярна плоскости П4.
Второй заменой вводим вместо П1 плоскость П5, параллельную плоскости треугольника АВС. Тогда получается система плоскостей проекций П4/П5, ось Х45 которой параллельна В4А4С4. Она может быть расположена на произвольном расстоянии от В4А4С4. Далее из точек В4 А4 С4 проводим линии связи перпендикулярно Х45, и на каждой из них от оси Х45 откладываем отрезок, равный расстоянию от горизонтальной проекции соответствующей точки до оси Х14. Получим точки А5, В5, С5, соединив которые имеем треугольник А5В5С5, который и является натуральной величиной треугольника АВС, поскольку в новой системе плоскостей проекций треугольник АВС параллелен плоскости П5.
Вопросы для самоконтроля
1. С какой целью осуществляется преобразование комплексного чертежа?
2. В чем заключается способ вращения вокруг проецирующей оси?
3. Назовите основные способы преобразования комплексного чертежа?
4. В чем сущность способа плоскопараллельного перемещения.
5. В чем заключается способ замены плоскостей проекций?
Источник